Skip to main content
Log in

Ontogenetic Pleiotropy of Genes Involved in CNVs in Human Spontaneous Abortions

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using chromosome microarray analysis, 52 samples of placental tissues from first trimester human spontaneous abortions were examined. One hundred twenty copy number variations (CNVs) were identified, affecting one or more genes (total of 427 genes). Using enrichment analysis with the mammalian phenotype ontology, all genes were divided into 183 categories (p ≤ 0.05). The embryogenesis category included 22 genes: AIP, BMP4, BMP5, CDKN1C, EXT1, GAB1, H19, HOXD13, IGF2, KIT, LDHA, NKX2-5, NRK, PEG3, PHLDA2, SMCHD1, SMN1, TBX3, TGIF1, TH, TLX2, and TRR. In this paper, the functions of each of the above genes and pathological phenotypes associated with mutations in them are discussed. A hypothesis of the pleiotropic effect of genes involved in CNVs in spontaneous abortions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kearney, H.M., Thorland, E.C., Brown, K.K., et al., American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants, Genet. Med., 2011, vol. 13, no. 7, pp. 680–685. https://doi.org/10.1097/GIM.0b013e3182217a3a

    Article  PubMed  Google Scholar 

  2. Capalbo, A., Rienzi, L., and Ubaldi, F.M., Diagnosis and clinical management of duplications and deletions, Fertil. Steril., 2017, vol. 107, no. 1, pp. 12–18. https://doi.org/10.1016/j.fertnstert.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Schaeffer, A.J., Chung, J., Heretis, K., et al., Comparative genomic hybridization–array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages, Am. J. Hum. Genet., 2004, vol. 74, no. 6, pp. 1168–1174. https://doi.org/10.1086/421250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benkhalifa, M., Kasakyan, S., Clement, P., et al., Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro, Prenat. Diagn., 2005, vol. 25, no. 10, pp. 894–900. https://doi.org/10.1002/pd.1230

    Article  CAS  PubMed  Google Scholar 

  5. Ballif, B.C., Kashork, C.D., Saleki, R., et al., Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization, Prenat. Diagn., 2006, vol. 26, no. 4, pp. 333–339. https://doi.org/10.1002/pd.1411

    Article  CAS  PubMed  Google Scholar 

  6. Shimokawa, O., Harada, N., Miyake, N., et al., Array comparative genomic hybridization analysis in first-trimester spontaneous abortions with ‘normal’ karyotypes, Am. J. Hum. Genet., vol. 140, no. 18, pp. 1931–1935. https://doi.org/10.1002/ajmg.a.31421

  7. Zhang, Y.X., Zhang, Y.P., Gu, Y., et al., Genetic analysis of first-trimester miscarriages with a combination of cytogenetic karyotyping, microsatellite genotyping and arrayCGH, Clin. Genet., 2009, vol. 75, no. 2, pp. 133–140. https://doi.org/10.1111/j.1399-0004.2008.01131.x

    Article  CAS  PubMed  Google Scholar 

  8. Robberecht, C., Schuddinck, V., Fryns, J.P., and Vermeesch, J.R., Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls, Genet. Med., 2009, vol. 11, no. 9, pp. 646–654. https://doi.org/10.1097/GIM.0b013e3181abc92a

    Article  Google Scholar 

  9. Menten, B., Swerts, K., Delle, ChiaieB., et al., Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples, BMC Med. Genet., 2009, vol. 10, pp. 89–93. https://doi.org/10.1186/1471-2350-10-89

    Article  PubMed  PubMed Central  Google Scholar 

  10. Warren, J.E., Turok, D.K., Maxwell, T.M., et al., Array comparative genomic hybridization for genetic evaluation of fetal loss between 10 and 20 weeks of gestation, Obstet. Gynecol., 2009, vol. 114, no. 5, pp. 1093–1102. https://doi.org/10.1097/AOG.0b013e3181bc6ab0

    Article  CAS  PubMed  Google Scholar 

  11. Rajcan-Separovic, E., Diego-Alvarez, D., Robinson, W.P., et al., Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss, Hum. Reprod., 2010, vol. 25, no. 11, pp. 2913–2922. https://doi.org/10.1093/humrep/deq202

    Article  CAS  PubMed  Google Scholar 

  12. Rajcan-Separovic, E., Qiao, Y., Tyson, C., et al., Genomic changes detected by array CGH in human embryos with developmental defects, Mol. Hum. Reprod., 2010, vol. 16, no. 2, pp. 125–134. https://doi.org/10.1093/molehr/gap083

    Article  CAS  PubMed  Google Scholar 

  13. Lathi, R.B., Massie, J.A., Loring, M., et al., Informatics enhanced SNP microarray analysis of 30 miscarriage samples compared to routine cytogenetics, PLoS One, 2012, vol. 7, no. 3. e31282. https://doi.org/10.1371/journal.pone.0031282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, J., Liu, C., Yao, F., et al., Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion, Mol. Cytogenet., 2012, vol. 5, no. 1, pp. 33. https://doi.org/10.1186/1755-8166-5-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robberecht, C., Pexsters, A., Deprest, J., et al., Cytogenetic and morphological analysis of early products of conception following hystero-embryoscopy from couples with recurrent pregnancy loss, Prenat. Diagn., 2012, vol. 32, no. 10, pp. 933–942. https://doi.org/10.1002/pd.3936

    Article  PubMed  Google Scholar 

  16. Lebedev, I.N., Kashevarova, A.A., Skryabin, N.A., et al., Array-based comparative genomic hybridization (array-CGH) in analysis of chromosomal aberrations and CNV polymorphism in bligted ovum pregnancies, Zh. Akush. Zhen. Bolezn., 2013, vol. 62, no. 2, pp. 117–125.

    Article  Google Scholar 

  17. Viaggi, C.D., Cavani, S., Malacarne, M., et al., First-trimester euploid miscarriages analysed by array-CGH, J. Appl. Genet., 2013, vol. 54, no. 3, pp. 353–359. https://doi.org/10.1007/s13353-013-0157-x

    Article  CAS  PubMed  Google Scholar 

  18. Bug, S., Solfrank, B., Schmitz, F., et al., Diagnostic utility of novel combined arrays for genome-wide simultaneous detection of aneuploidy and uniparental isodisomy in losses of pregnancy, Mol. Cytogenet., 2014, vol. 7: 43. https://doi.org/10.1186/1755-8166-7-43

    Article  PubMed  PubMed Central  Google Scholar 

  19. Levy, B., Sigurjonsson, S., Pettersen, B., et al., Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis, Obstet. Gynecol., 2014, vol. 124, pp. 202–209. https://doi.org/10.1097/AOG.0000000000000325

    Article  CAS  PubMed  Google Scholar 

  20. Bagheri, H., Mercier, E., Qiao, Y., et al., Genomic characteristics of miscarriage copy number variants, Mol. Hum. Reprod., 2015, vol. 21, no. 8, pp. 655–661. https://doi.org/10.1093/molehr/gav030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kasak, L., Rull, K., Sõber, S., and Laan, M., Copy number variation profile in the placental and parental genomes of recurrent pregnancy loss families, Sci. Rep., 2017, vol. 7: 45327. https://doi.org/10.1038/srep45327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagirnaja, L., Palta, P., Kasak, L., et al., Structural genomic variation as risk factor for idiopathic recurrent miscarriage, Hum. Mutat., 2014, vol. 35, no. 8, pp. 972–982. https://doi.org/10.1002/humu.22589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sivakumaran, S., Agakov, F., Theodoratou, E., et al., Abundant pleiotropy in human complex diseases and traits, Am. J. Hum. Genet., 2011, vol. 89, no. 5, pp. 607–618. https://doi.org/10.1016/j.ajhg.2011.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solovieff, N., Cotsapas, C., Lee, P.H., et al., Pleiotropy in complex traits: challenges and strategies, Nat. Rev. Genet., 2013, vol. 14, no. 7, pp. 483–495. https://doi.org/10.1038/nrg3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiarella, S.E., Rabin, E.E., Ostilla, L.A., et al., aT-catenin: a developmentally dispensable, disease-linked member of the a-catenin family, Tissue Barriers, 2018, vol. 6, no. 2. e1463896. https://doi.org/10.1080/21688370.2018.1463896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Database of Genomic Variants. http://dgv.tcag.ca/ dgv/app/home.

  27. The National Center for Biotechnology. Gene. https://www.ncbi.nlm.nih.gov/gene.

  28. Online Mendelian Inheritance in Man. https://www.omim.org/.

  29. An integrative web-based and mobile gene-list enrichment analysis tool. http://amp.pharm.mssm.edu/Enrichr/#.

  30. Heinritz, W., Hüffmeier, U., Strenge, S., et al., New mutations of EXT1 and EXT2 genes in German patients with multiple osteochondromas, Ann. Hum. Genet., 2009, vol. 73, pp. 283–291. https://doi.org/10.1111/j.1469-1809.2009.00508.x

    Article  CAS  PubMed  Google Scholar 

  31. Ryu, H.H., Kim, T., Kim, J.W., et al., Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory, Sci. Signal., 2019, vol. 12, no. 571. pii: eaau5755. https://doi.org/10.1126/scisignal.aau5755

  32. He, D., Zeng, H., Chen, J., et al., H19 regulates trophoblastic spheroid adhesion by competitively binding to let-7, Reproduction, 2019, vol. 157, no. 5, pp. 423–430. https://doi.org/10.1530/REP-18-0339

  33. Proia, P., Di Liegro, C.M., Schiera, G., et al., Lactate as a metabolite and a regulator in the central nervous system, Int. J. Mol. Sci., 2016, vol. 17, no. 9: 1450. https://doi.org/10.3390/ijms17091450

    Article  CAS  PubMed Central  Google Scholar 

  34. Hammond, E.R., Stewart, B., Peek, J.C., et al., Assessing embryo quality by combining non-invasive markers: early time-lapse parameters reflect gene expression in associated cumulus cells, Hum. Reprod., 2015, vol. 30, no. 8, pp. 1850–1860. https://doi.org/10.1093/humrep/dev121

    Article  CAS  PubMed  Google Scholar 

  35. Terada, R., Warren, S., Lu, J.T., et al., Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation, Cardiovasc. Res., 2011, vol. 91, no. 2, pp. 289–299. https://doi.org/10.1093/cvr/cvr037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morioka, Y., Nam, J.M., and Ohashi, T., Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation, PLoS One, 2017, vol. 12, no. 2. e0171503. https://doi.org/10.1371/journal.pone.0171503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frey, W.D. and Kim, J., Tissue-specific contributions of paternally expressed gene 3 in lactation and maternal care of Mus musculus, PLoS One, 2015, vol. 10, no. 12. e0144459. https://doi.org/10.1371/journal.pone.0144459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, A., Kim, H., and Kim, J., PEG3 control on the mammalian MSL complex, PLoS One, 2017, vol. 12, no. 6. e0178363. https://doi.org/10.1371/journal.pone.0178363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Broad, K.D., Curley, J.P., and Keverne, E.B., Increased apoptosis during neonatal brain development underlies the adult behavioral deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3), Dev. Neurobiol., 2009, vol. 69, no. 5, pp. 314–325. https://doi.org/10.1002/dneu.20702

    Article  CAS  PubMed  Google Scholar 

  40. Sõber, S., Rull, K., Reiman, M., et al., RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery, Sci. Rep., 2016, vol. 6: 38439. https://doi.org/10.1038/srep38439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Green, B.B., Kappil, M., Lambertini, L., et al., Expression of imprinted genes in placenta is associated with infant neurobehavioral development, Epigenetics, 2015, vol. 10, no. 9, pp. 834–841. https://doi.org/10.1080/15592294.2015.1073880

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pathirage, N.A., Cocquebert, M., Sadovsky, Y., et al., Homeobox gene transforming growth factor β-induced factor-1 (TGIF-1) is a regulator of villous trophoblast differentiation and its expression is increased in human idiopathic fetal growth restriction, Mol. Hum. Reprod., 2013, vol. 19, no. 10, pp. 665–675. https://doi.org/10.1093/molehr/gat042

    Article  CAS  PubMed  Google Scholar 

  43. Tang, S.J., Hoodless, P.A., Lu, Z., et al., The Tlx-2 homeobox gene is a downstream target of BMP signalling and is required for mouse mesoderm development, Development, 1998, vol. 125, no. 10, pp. 1877–1887.

    CAS  PubMed  Google Scholar 

  44. Lin, B.C., Sullivan, R., Lee, Y., et al., Deletion of the aryl hydrocarbon receptor-associated protein 9 leads to cardiac malformation and embryonic lethality, J. Biol. Chem., 2007, vol. 282, no. 49, pp. 35924–35932. https://doi.org/10.1074/jbc.M705471200

    Article  CAS  PubMed  Google Scholar 

  45. Chen, B., Liu, P., Hujber, E.J., et al., AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor, Nat. Commun., 2017, vol. 8, no. 1: 1380. https://doi.org/10.1038/s41467-017-01704-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Georgitsi, M., Heliovaara, E., Paschke, R., et al., Large genomic deletions in AIP in pituitary adenoma predisposition, J. Clin. Endocrinol. Metab., 2008, vol. 93, no. 10, pp. 4146–4151. https://doi.org/10.1210/jc.2008-1003

    Article  CAS  PubMed  Google Scholar 

  47. Winnier, G., Blessing, M., Labosky, P.A., and Hogan, B.L., Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse, Genes Dev., 1995, vol. 9, no. 17, pp. 2105–2116.

    Article  CAS  Google Scholar 

  48. Capkova, P., Santava, A., Markova, I., et al., Haploinsufficiency of BMP4 and OTX2 in the foetus with an abnormal facial profile detected in the first trimester of pregnancy, Mol. Cytogenet., 2017, vol. 10: 47. https://doi.org/10.1186/s13039-017-0351-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nolen, L.D., Amor, D., Haywood, A., et al., Deletion at 14q22-23 indicates a contiguous gene syndrome comprising anophthalmia, pituitary hypoplasia, and ear anomalies, Am. J. Med. Genet., Part A, 2006, vol. 140, no. 16, pp. 1711–1718. https://doi.org/10.1002/ajmg.a.31335

    Article  CAS  Google Scholar 

  50. Takahashi, K., Nakayama, K., and Nakayama, K., Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation, J. Biochem., 2000, vol. 127, no. 1, pp. 73–83.

    Article  CAS  Google Scholar 

  51. Zhang, P., Liégeois, N.J., Wong, C., et al., Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome, Nature, 1997, vol. 387, no. 6629, pp. 151–158. https://doi.org/10.1038/387151a0

    Article  CAS  Google Scholar 

  52. De Crescenzo, A., Sparago, A., Cerrato, F., et al., Paternal deletion of the 11p15.5 centromeric-imprinting control region is associated with alteration of imprinted gene expression and recurrent severe intrauterine growth restriction, J. Med. Genet., 2013, vol. 50, no. 2, pp. 99–103. https://doi.org/10.1136/jmedgenet-2012-101352

    Article  CAS  PubMed  Google Scholar 

  53. Zhuang, L., Gerber, S.D., Kuchen, S., et al., Deletion of exon 8 from the EXT1 gene causes multiple osteochondromas (MO) in a family with three affected members, Springerplus, 2016, vol. 5: 71. https://doi.org/10.1186/s40064-016-1695-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, X., Wei, G., Shi, Z., et al., Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice, Dev. Biol., 2000, vol. 224, no. 2, pp. 299–311. https://doi.org/10.1006/dbio.2000.9798

    Article  CAS  PubMed  Google Scholar 

  55. Itoh, M., Yoshida, Y., Nishida, K., et al., Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation, Mol. Cell Biol., 2000, vol. 20, no. 10, pp. 3695–3704.

    Article  CAS  Google Scholar 

  56. Fryssira, H., Amenta, S., Kanber, D., et al., A novel large deletion of the ICR1 region including H19 and putative enhancer elements, BMC Med. Genet., 2015, vol. 16: 30. https://doi.org/10.1186/s12881-015-0173-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grønskov, K., Poole, R.L., Hahnemann, J.M., et al., Deletions and rearrangements of the H19/IGF2 enhancer region in patients with Silver—Russell syndrome and growth retardation, J. Med. Genet., 2011, vol. 48, no. 5, pp. 308–311. https://doi.org/10.1136/jmg.2010.086504

    Article  CAS  PubMed  Google Scholar 

  58. Radhakrishnan P, Nayak SS, Pai MV et al. Occurrence of synpolydactyly and omphalocele in a fetus with a HOXD13 mutation, J. Pediatr. Genet., 2017, vol. 6, no. 3, pp. 194–197. https://doi.org/10.1055/s-0037-1602142

    Article  PubMed  PubMed Central  Google Scholar 

  59. Goodman, F., Giovannucci-Uzielli, M.L., Hall, C., et al., Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families, Am. J. Hum. Genet., 1998, vol. 63, no. 4, pp. 992–1000. https://doi.org/10.1086/302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haruta, M., Arai, Y., Sugawara, W., et al., Duplication of paternal IGF2 or loss of maternal IGF2 imprinting occurs in half of Wilms tumors with various structural WT1 abnormalities, Genes Chromosomes Cancer, 2008, vol. 47, no. 8, pp. 712–727. https://doi.org/10.1002/gcc.20572

    Article  CAS  PubMed  Google Scholar 

  61. Quek, R., Farid, M., Kanjanapan, Y., et al., Prognostic significance of KIT exon 11 deletion mutation in intermediate-risk gastrointestinal stromal tumor, Asia Pac. J. Clin. Oncol., 2017, vol. 13, no. 3, pp. 115–124. https://doi.org/10.1111/ajco.12603

    Article  PubMed  Google Scholar 

  62. Wit, J.M., van Duyvenvoorde, H.A., van Klinken, J.B., et al., Copy number variants in short children born small for gestational age, Horm. Res. Paediatr., 2014, vol. 82, no. 5, pp. 310–318. https://doi.org/10.1159/000367712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Midic, U., Vincent, K.A., Wang, K., et al., Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development, Mol. Reprod. Dev., 2018, vol. 85, no. 7, pp. 635–648. https://doi.org/10.1002/mrd.23001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kashevarova, A.A., Nazarenko, L.P., Skryabin, N.A., et al., A mosaic intragenic microduplication of LAMA1 and a constitutional 18p11.32 microduplication in a patient with keratosis pilaris and intellectual disability, Am. J. Med. Genet., Part A, 2018, vol. 176, no. 11, pp. 2395–2403. https://doi.org/10.1002/ajmg.a.40478

    Article  CAS  Google Scholar 

  65. Monani, U.R., Sendtner, M., Coovert, D.D., et al., The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn –/– mice and results in a mouse with spinal muscular atrophy, Hum. Mol. Genet., 2000, vol. 9, no. 3, pp. 333–339.

    Article  CAS  Google Scholar 

  66. Cogulu, O., Durmaz, B., Pehlivan, S., et al., Evaluation of the SMN and NAIP genes in a family: homozygous deletion of the SMN2 gene in the fetus and outcome of the pregnancy, Genet. Test Mol. Biomarkers, 2009, vol. 13, no. 3, pp. 287–288. https://doi.org/10.1089/gtmb.2008.0139

    Article  CAS  PubMed  Google Scholar 

  67. Frank, D.U., Carter, K.L., Thomas, K.R., et al., Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 3. E154–E163. https://doi.org/10.1073/pnas.1115165109

    Article  PubMed  Google Scholar 

  68. Forzano, F., Foley, P.A., Keane, M.R., et al., Contiguous gene deletion of TBX5 and TBX3: report of another case, Clin. Dysmorphol., 2018, vol. 27, no. 1, pp. 6–8. https://doi.org/10.1097/MCD.0000000000000199

    Article  PubMed  Google Scholar 

  69. Rosenfeld, J.A., Ballif, B.C., Martin, D.M., et al., Clinical characterization of individuals with deletions of genes in holoprosencephaly pathways by aCGH refines the phenotypic spectrum of HPE, Hum. Genet., 2010, vol. 127, no. 4, pp. 421–440. https://doi.org/10.1007/s00439-009-0778-7

    Article  CAS  PubMed  Google Scholar 

  70. Buza, N., McGregor, S.M., Barroilhet, L., et al., Paternal uniparental isodisomy of tyrosine hydroxylase locus at chromosome 11p15.4: spectrum of phenotypical presentations simulating hydatidiform moles, Mod. Pathol., 2019. https://doi.org/10.1038/s41379-019-0266-0

  71. Herceg, Z., Hulla, W., Gell, D., et al., Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression, Nat. Genet., 2001, vol. 29, no. 2, pp. 206–211. https://doi.org/10.1038/ng725

    Article  CAS  PubMed  Google Scholar 

  72. Cogné, B., Ehresmann, S., Beauregard-Lacroix, E., et al., Missense variants in the histone acetyltransferase complex component gene TRRAP cause autism and syndromic intellectual disability, Am. J. Hum. Genet., 2019, vol. 104, no. 3, pp. 530–541. https://doi.org/10.1016/j.ajhg.2019.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cancemi, D., Urciuoli, M., Morelli, F., et al., A case of polimalformed fetus with a microdeletion of CTNNA3 gene, J. Prenat. Med., 2016, vol. 10, nos. 3–4, pp. 20–22. https://doi.org/10.11138/jpm/2016.10.3.020

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bacchelli, E., Ceroni, F., Pinto, D., et al., A CTNNA3 compound heterozygous deletion implicates a role for αT-catenin in susceptibility to autism spectrum disorder, J. Neurodev. Disord., 2014, vol. 6, no. 1: 17. https://doi.org/10.1186/1866-1955-6-17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried at the Medical Genomics Center for Collective Use, using the biological collection of the Biobank of Northern Eurasia of the Research Institute of Medical Genetics, Tomsk National Research Medical Center.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 14-04-32047) and the state task for the Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences (state registration number AAAA-A19-119020890005-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kashevarova.

Ethics declarations

Conflicts of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures carried out in the study with the participation of people comply with the ethical standards of the institutional and/or national research ethics committee and the 1964 Helsinki Declaration and its subsequent changes or comparable standards of ethics. Informed voluntary consent was obtained from each of the participants in the study.

Additional information

Translated by A. Kashevarova

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashevarova, A.A., Skryabin, N.A., Nikitina, T.V. et al. Ontogenetic Pleiotropy of Genes Involved in CNVs in Human Spontaneous Abortions. Russ J Genet 55, 1214–1226 (2019). https://doi.org/10.1134/S1022795419100065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419100065

Keywords:

Navigation