Skip to main content
Log in

The Rate of Mitochondrial Cytochrome b Gene Evolution according to the Analysis of Recent (about 12 000 Years) Isolation of Charrs Salvelinus of Lake Kronotskoe

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The nucleotide substitution rate of the mitochondrial cytochrome b gene is estimated on the basis of the genetic differences of charr populations (Salvelinus) with a known time of isolation (Upper Pleistocene–Holocene boundary) as 3.11 × 10–8 substitutions/position/year (95% confidence interval: 2.59 × 10–8–3.64 × 10–8). This estimate is about five times higher than the one obtained for this gene when considering long time intervals of divergence of salmonid fishes (phylogenetic rate)—0.66 × 10–8 (0.56 × 10–8–0.77 × 10–8). Thus, the rule of decrease in mtDNA nucleotide substitution rate estimates while moving from the recent calibration dates (thousand years) to the ancient ones (millions of years) applies also to the lineage of salmonid fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ho, S.Y.W., Phillips, M.J., Cooper, A., and Drummond, A.J., Time dependency of molecular rate estimates and systematic overestimation of recent divergence times, Mol. Biol. Evol., 2005, vol. 22, no. 7, pp. 1561—1568. https://doi.org/10.1093/molbev/msi145

    Article  CAS  PubMed  Google Scholar 

  2. Shedko, S.V., On the evolution rate of mitochondrial DNA of salmon fishes, Zh. Evol. Biokhim. Fiziol., 1991, vol. 27, no. 2, pp. 249—254.

    CAS  Google Scholar 

  3. Smith, G.R., Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates, Syst. Biol., 1992, vol. 41, no. 1, pp. 41—57. https://doi.org/10.1093/sysbio/41.1.41

    Article  Google Scholar 

  4. Senchukova, A.L., Pavlov, S.D., Mel’nikova, M.N., and Mugue, N.S., Genetic differentiation of chars (genus Salvelinus) from lake Kronotskoe based on analysis of mitochondrial DNA, J. Ichthyol., 2012, vol. 52, no. 6, pp. 389—399. https://doi.org/10.1134/S0032945212040121

    Article  Google Scholar 

  5. Senchukova, A.L., Mugue, N.S., Pavlov, S.D., and Mel’nikova, M.N., On the origin of charrs of the genus Salvelinus of the Kronotskoe Lake and their relationships with other charr populations of the Kamchatka peninsula, J. Ichthyol., 2013, vol. 53, no. 10, pp. 840—848. https://doi.org/10.1134/S0032945213100093

    Article  Google Scholar 

  6. Melekestsev, I.V., Braitseva, O.A., Erlikh, E.N., and Kozhemyaka, N.N., Volcanic mountains and plains, in Istoriya razvitiya rel’efa Sibiri i Dal’nego Vostoka: Kamchatka, Kuril’skie i Komandorskie ostrova (The History of Siberia and the Far East relief development: Kamchatka, the Kuril Islands and the Commander Islands), Moscow: Nauka, 1974, pp. 162—233.

    Google Scholar 

  7. Gushchenko, I.I., Kronotsky volcano, in Deistvuyushchie vulkany Kamchatki v 2 tomakh (Active Volcanoes of Kamchatka in 2 Volumes), Moscow: Nauka, 1991, vol. 2, pp. 52—61.

  8. Viktorovskii, R.M., Mekhanizmy vidoobrazovaniya u gol’tsov Kronotskogo ozera (Speciation Mechanisms of the Charrs from the Kronotskoe Lake), Moscow: Nauka, 1978.

  9. Esin, E.V. and Markevich, G.N., Gol’tsy roda Salvelinus aziatskoi chasti Severnoi Patsifiki: proiskhozhdenie, evolyutsiya i sovremennoe raznoobrazie (Charrs of the Genus Salvelinus from the Asian Part of the North Pacific: Origin, Evolution, and Modern Diversity), Petropavlovsk-Kamchatskii: Kamchatpress, 2017.

  10. Savvaitova, K.A., Arkticheskie gol’tsy (Arctic Charrs), Moscow: Agropromizdat, 1989.

  11. Forster, P., Harding, R., Torroni, A., and Bandelt, H.-J., Origin and evolution of Native American mtDNA variation: a reappraisal, Am. J. Hum. Genet., 1996, vol. 59, no. 4, pp. 935—945.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Villesen, P., FaBox: an online toolbox for fasta sequences, Mol. Ecol. Notes, 2007, vol. 7, no. 6, pp. 965—968. https://doi.org/10.1111/j.1471-8286.2007.01821.x

    Article  CAS  Google Scholar 

  13. Clement, M., Posada, D., and Crandall, K.A., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, vol. 9, no. 10, pp. 1657—1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  14. Leigh, J.W. and Bryant, D., PopART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  15. Canty, A. and Ripley, B., boot: Bootstrap R (S-Plus) Functions: R Package Version 1.3-20, 2017.

  16. Pavlov, S.D., Kuzishchin, K.V., Gruzdeva, M.A., et al., Phenetic diversity and spatial structure of chars (Salvelinus) of the Kronotskaya riverine-lacustrine system (Eastern Kamchatka), J. Ichthyol., 2013, vol. 53, no. 9, pp. 662—686. https://doi.org/10.1134/S003294521306009X

    Article  Google Scholar 

  17. Nielsen, R. and Wakeley, J., Distinguishing migration from isolation: a Markov chain Monte Carlo approach, Genetics, 2001, vol. 158, no. 2, pp. 885—896.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sethuraman, A. and Hey, J., IMa2p—parallel MCMC and inference of ancient demography under the isolation with migration (IM) model, Mol. Ecol. Resour., 2016, vol. 16, no. 1, pp. 206—215. https://doi.org/10.1111/1755-0998.12437

    Article  PubMed  Google Scholar 

  19. Drummond, A.J., Suchard, M.A., Xie, D., and Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 2012, vol. 29, no. 8, pp. 1969—1973. https://doi.org/10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shedko, S.V., Miroshnichenko, I.L., and Nemkova, G.A., Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: analysis of mtDNA data, Russ. J. Genet., 2013, vol. 49, no. 6, pp. 623—637. https://doi.org/10.1134/S1022795413060112

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported within the framework of the research topic no. AAAA-A17-117062710083-0. The results were obtained using the equipment of the Far Eastern Computing Resource Center for Collective Usage, Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (https://www.cc.dvo.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shedko.

Ethics declarations

Conflict of interests. The author declares no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shedko, S.V. The Rate of Mitochondrial Cytochrome b Gene Evolution according to the Analysis of Recent (about 12 000 Years) Isolation of Charrs Salvelinus of Lake Kronotskoe. Russ J Genet 55, 1559–1563 (2019). https://doi.org/10.1134/S102279541909014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541909014X

Keywords:

Navigation