Skip to main content

Advertisement

Log in

Genetic and Genomic Basis of Aggressive Behavior

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic and genomic studies of aggressive behavior are of great interest both for clinical medicine, which is related to treatment of patients with various forms of personality and psychiatric disorders, and for forensic purposes, in particular, for prognostication of different types of crime. Moreover, genetic research of aggressive behavior has major importance in connection to social and familial relationships, dealing with relations to children in society and family. Numerous studies have been published in this field. The present review describes studies on the genetic basis of aggressive/antisocial behavior, genome wide associations, and meta-analyses. The problems of genotype–social environment interaction and epigenetic mechanisms of genotype implementation in humans are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. GTP-binding proteins.

  2. Channel forming proteins supporting the potential difference existing between the outer and inner sides of the cell membrane.

  3. The coefficient of disagreement (also known as odds ratio or risk ratio). It is used to describe the results of logistic regression and is calculated from a table including the number of observed and predicted values for binary dependent variables in the cells.

  4. GPCR—G protein coupled receptor signaling pathway.

  5. ERK/MAPK—ERK is extracellular signal regulated kinase; MAPK is mitogen-activated protein kinase.

  6. Rho-GTPases—family of cell signaling proteins, subgroup of small GTP hydrolases of Ras superfamily.

  7. Reelin is a protein found in the brain and other tissues and organs in humans and animals; it regulates the migration and positioning of nerve stem cells and contributes to the mechanisms of memory and learning.

REFERENCES

  1. Gorodetsky, E., Bevilacqua, L., Carli, V., et al., The interactive effect of MAOA-LPR genotype and childhood physical neglect on aggressive behaviors in Italian male prisoners, Genes, Brain Behav., 2014, vol. 13, pp. 543—549. https://doi.org/10.1111/gbb.12140

    Article  CAS  Google Scholar 

  2. Temcheff, C.E., Serbin, L.A., Martin-Storey, A., et al., Childhood aggression, withdrawal and likeability, and the use of health care later: a longitudinal study, CMAJ, 2011, vol. 183, pp. 2095—2101. https://doi.org/10.1503/cmaj.091830

    Article  PubMed  PubMed Central  Google Scholar 

  3. McKay, K.E. and Halperin, J.M., ADHD, aggression, and antisocial behavior across the lifespan: interactions with neurochemical and cognitive function, Ann. N.Y. Acad. Sci., 2001, vol. 931, pp. 84—96. https://doi.org/1111/j.1749-6632.2001.tb05774.x

  4. Retz, W. and Rosler, M., The relation of ADHD and violent aggression: what can we learn from epidemiological and genetic studies?, Int. J. Law Psychiatry, 2009, vol. 32, pp. 235—243. https://doi.org/10.1016/j.ijlp.2009.04.006

    Article  PubMed  Google Scholar 

  5. Bulgari, V., Iozzino, L., Ferrari, C., et al., Clinical and neuropsychological features of violence in schizophrenia: a prospective cohort study, Schizophr. Res., 2017, vol. 181, pp. 124—130. https://doi.org/10.1016/j.schres.2016.10.016

    Article  PubMed  Google Scholar 

  6. Volavka, J., Bilder, R., and Nolan, K., Catecholamines and aggression: the role of COMT and MAO polymorphisms, Ann. N.Y. Acad. Sci., 2004, vol. 1036, pp. 393—398. https://doi.org/10.1196/annals.1330.023

    Article  CAS  PubMed  Google Scholar 

  7. Manchia, M., Carpiniello, B., Valtorta, F., and Comai, S., Serotonin dysfunction, aggressive behavior, and mental illness: exploring the link using a dimensional approach, ACS Chem. Neurosci., 2017, vol. 8, no. 5, pp. 961—972. https://doi.org/10.1021/acschemneuro.6b00427

    Article  CAS  PubMed  Google Scholar 

  8. Thornton, L.C., Frick, P.J., Crapanzano, A.M., and Terranova, A.M., The incremental utility of callous-unemotional traits and conduct problems in predicting aggression and bullying in a community sample of boys and girls, Psychol. Assess., 2013, vol. 25, pp. 366—378. https://doi.org/10.1037/a0031153

    Article  PubMed  Google Scholar 

  9. Lee, B.X., Leckman, J.F., and Khoshnood, K., Violence, health, and South-North collaboration: interdisciplinary research in light of the 2030 Agenda, Soc. Sci. Med., 2015, vol. 146, pp. 236—242. https://doi.org/10.1016/j.socscimed.2015.10.029

    Article  PubMed  Google Scholar 

  10. Buckingham, E.T. and Daniolos, P., Longitudinal outcomes for victims of child abuse, Curr. Psychiatry Rep., 2013, vol. 15, no. 2, p. 342. https://doi.org/10.1007/s11920-012-0342-3

    Article  PubMed  Google Scholar 

  11. Sampson, R.J. and Lauritsen, J.T., Racial and ethnic disparities in crime and criminal justice in the United States, Crime Justice, 1997, vol. 21, pp. 311—374.https://doi.org/10.1086/449253

    Article  Google Scholar 

  12. Walsh, A., Race and Crime: A Biosocial Analysis, New York: Nova Science, 2004.

    Google Scholar 

  13. Schilling, E.A., Aseltine, R.J., and Gore, S., Adverse childhood experiences and mental health in young adults: a longitudinal survey, BMC Publ. Health, 2007, vol. 7, p. 30. https://doi.org/10.1186/1471-2458-7-30

    Article  Google Scholar 

  14. Rocque, M., Welsh, B.C., and Raine, A., Biosocial criminology and modern crime prevention, J. Crim. Justice, 2012, vol. 40, no. 3, pp. 306—312. https://doi.org/10.1016/j.jcrimjus.2012.05.003

    Article  Google Scholar 

  15. Owen, T., Criminological Theory: A Genetic-Social Approach, Basingstoke, UK: Palgrave Macmillan, 2014. https://doi.org/10.1057/9781137316.

  16. Farrington, D.P., The relationship between low resting heart rate and violence, in Biosocial Bases of Violence, Raine, A., Brennan, P.A., Farrington, D., and Mednick, S.A., Eds., New York: Plenum, 1997, pp. 89—106. https://doi.org/10.1007/978-1-4757-4648-8_6

    Google Scholar 

  17. Raine, A., Venables, P.H., and Mednick, S.A., Low resting heart rate at age 3 years predisposes to aggression at age 11 years: evidence from the Mauritius Child Health Project, J. Am. Acad. Child Adolesc. Psychiatry, 1997, vol. 36, no. 10, pp. 1457—1464. https://doi.org/10.1097/00004583-199710000-00029

    Article  CAS  PubMed  Google Scholar 

  18. Raine, A., The biological basis of crime, in Crime: Public Policies for Crime Control Wilson, J.Q. and Petersilia, J., Eds., Oakland, CA: ICS Press, 2002, 2nd ed., pp. 43—74.

    Google Scholar 

  19. Hare, R.D., Without Conscience: The Disturbing World of the Psychopaths among Us, New York: Gulford, 1999.

    Google Scholar 

  20. Lorber, M.F., Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis, Psychol. Bull., 2004, vol. 130, no. 4, pp. 531—552. https://doi.org/10.1037/0033-2909.130.4.531

    Article  PubMed  Google Scholar 

  21. Raine, A. and Portnoy, J., Biology of crime, in The Future of Criminology, Cullen, F.T. and Wilcox, P., Eds., Oxford Scholarship Online, 2012. https://doi.org/10.1093/acprof:oso/9780199917938.003.0004

    Google Scholar 

  22. Choy, O., Raine, A., and Hamilton, R.H., Stimulation of the prefrontal cortex reduces intentions to commit aggression: a randomized, double-blind, placebo-controlled, stratified, parallel-group trial, J. Neurosci., 2018, vol. 38, no. 29, pp. 6505—6512. https://doi.org/10.1523/JNEUROSCI.3317-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y. and Raine, A., Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis, Psychiatry Res.: Neuroimaging, 2009, vol. 174, no. 2, pp. 81—88. https://doi.org/10.1016/j.pscychresns.2009.03.012

    Article  PubMed  Google Scholar 

  24. Brunner, H.G., Nelen, M., Breakefield, X.O., Ropers, H.H., and van Oost, B.A., Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A, Science, 1993, vol. 262, pp. 578—580.

    Article  CAS  Google Scholar 

  25. Cohen, P. and Cohen, J., The clinician’s illusion, Arch. Gen. Psychiatry, 1984, vol. 41, no. 12, pp. 1178—1182. https://doi.org/10.1001/archpsyc.1984.01790230064010

    Article  CAS  PubMed  Google Scholar 

  26. Boisvert, D., Wright, J.P., Knopik, V., and Vaske, J., Genetic and environmental overlap between low self-control and delinquency, J. Quant. Criminol., 2012, vol. 28, pp. 477—507. https://doi.org/10.1007/s10940-011-9150-x

    Article  Google Scholar 

  27. Connolly, E.J. and Beaver, K.M., Examining the genetic and environmental influences on self-control and delinquency: results from a genetically informative analysis of sibling pairs, J. Interpers. Violence, 2014, vol. 29, pp. 707—735. https://doi.org/10.1177/0886260513505209

    Article  PubMed  Google Scholar 

  28. Krueger, R.F., South, S., Johnson, W., and Iacono, W., The heritability of personality is not always 50%: gene—environment interactions and correlations between personality and parenting, J. Pers., 2008, vol. 76, pp. 1485—1522. https://doi.org/10.1111/j.1467-6494.2008.00529.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beaver, K.M., Genetic influences on being processed through the criminal justice system: results from a sample of adoptees, Biol. Psychiatry, 2011, vol. 69, pp. 282—287. https://doi.org/10.1016/j.biopsych.2010.09.007

    Article  PubMed  Google Scholar 

  30. Chabris, C.F., Lee, J.J., Cesarini, D., et al., The fourth law of behavior genetics, Curr. Dir. Psychol. Sci., 2015, vol. 24, pp. 304—312. https://doi.org/10.1177/0963721415580430

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwartz, J.A. and Beaver, K.M., Evidence of a gene × environment interaction between perceived prejudice and MAOA genotype in the prediction of criminal arrests, J. Crim. Justice, 2011, vol. 39, pp. 378—384. https://doi.org/10.1016/j.jcrimjus.2011.05.003

    Article  Google Scholar 

  32. Polderman, T.J., Benyamin, B., De Leeuw, C.A., et al., Meta-analysis of the heritability of human traits based on fifty years of twin studies, Nat. Genet., 2015, vol. 47, no. 7, pp. 702—709. https://doi.org/10.1038/ng.3285

    Article  CAS  PubMed  Google Scholar 

  33. Boutwell, B.B. and Connolly, E.J., On the heritability of criminal justice processing, SAGE Open, 2017, pp. 1—31. https://doi.org/10.1177/2158244017723408

    Article  Google Scholar 

  34. Beaver, K.M., Nonshared environmental influences on adolescent delinquent involvement and adult criminal behavior, Criminology, 2008, vol. 46, pp. 341—369. https://doi.org/10.1111/j.1745-9125.2008.00112.x

    Article  Google Scholar 

  35. Plomin, R., DeFries, J.C., Knopik, V.S., and Neiderhiser, J., Behavior Genetics, New York: Worth, 2013, 6th ed.

    Google Scholar 

  36. Barnes, J.C., Beaver, K.M., and Boutwell, B.B., Examining the genetic underpinnings to Moffitt’s developmental taxonomy: a behavioral genetic analysis, Criminology, 2011, vol. 49, pp. 923—954. https://doi.org/10.1111/j.1745-9125.2011.00243.x

    Article  Google Scholar 

  37. DiLalla, L.F. and Gottesman, I.I., Biological and genetic contributors to violence: Widom’s untold tale, Psychol. Bull., 1991, vol. 109, pp. 125—129. https://doi.org/10.1037//0033-2909.109.1.125

    Article  CAS  PubMed  Google Scholar 

  38. Tsiouris, J.A., Kim, S.Y., Brown, W.T., and Cohen, I.L., Association of aggressive behaviours with psychiatric disorders, age, sex and degree of intellectual disability: a large-scale survey, J. Intellect. Disabil. Res., 2011, vol. 55, no. 7, pp. 636—649. https://doi.org/10.1097/YCO.0b013e328306a090

    Article  CAS  PubMed  Google Scholar 

  39. Manchia, M. and Fanos, V., Targeting aggression in severe mental illness: the predictive role of genetic, epigenetic, and metabolomic markers, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, vol. 77, pp. 32—41. https://doi.org/10.1016/j.pnpbp.2017.03.024

    Article  PubMed  Google Scholar 

  40. Porsch, R.M., Middeldorp, C.M., Cherny, S.S., et al., Longitudinal heritability of childhood aggression, Am. J. Med. Genet.,Part B, 2016, vol. 171, no. 5, pp. 697—707. https://doi.org/10.1002/ajmg.b.32420

    Article  Google Scholar 

  41. Tuvblad, C. and Baker, L.A., Human aggression across the lifespan: genetic propensities and environmental moderators, Adv. Genet., 2011, vol. 75, pp. 171—214. https://doi.org/10.1016/B978-0-12-380858-5.00007-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ferguson, C.J., Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective, J. Soc. Psychol., 2010, vol. 150, pp. 160—180. https://doi.org/10.1080/00224540903366503

    Article  PubMed  Google Scholar 

  43. Turkheimer, E., Three laws of behavior genetics and what they mean, Curr. Dir. Psychol. Sci., 2000, vol. 9, pp. 160—164. https://doi.org/10.1111/1467-8721.00084

    Article  Google Scholar 

  44. Burt, S.A. and Donnellan, M.B., Development and validation of the subtypes of antisocial behavior questionnaire, Aggress. Behav., 2009, vol. 35, pp. 376—398. https://doi.org/10.1002/ab.20314

    Article  PubMed  Google Scholar 

  45. Chen, C., Liu, C., Chen, C., et al., Genetic variations in the serotoninergic system and environmental factors contribute to aggressive behavior in Chinese adolescents, Physiol. Behav., 2015, vol. 138, pp. 62—68. https://doi.org/10.1016/j.physbeh.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  46. Kendler, K.S., Ohlsson, H., Morris, N.A., et al., A Swedish population-based study of the mechanisms of parent—offspring transmission of criminal behavior, Psychol. Med., 2015, vol. 45, pp. 1093—1102. https://doi.org/10.1016/j.physbeh.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Laucht, M., Brandeis, D., and Zohsel, K., Gene—environment interactions in the etiology of human violence, Curr. Top. Behav. Neurosci., 2014, vol. 17, pp. 267—295. https://doi.org/10.1007/7854_2013_260

    Article  PubMed  Google Scholar 

  48. Lee, B.X., Causes and cures XV: synthesis and integration, Aggress. Violent Behav., 2017, vol. 35, pp. 91—96. https://doi.org/10.1016/j.avb.2017.04.001

    Article  Google Scholar 

  49. Widom, C.S., The cycle of violence, Science, 1989, vol. 244, no. 4901, pp. 160—166. https://doi.org/10.1126/science.2704995

    Article  CAS  PubMed  Google Scholar 

  50. Widom, C.S., Handbook of Antisocial Behavior, Stoff, D.M., Breiling, J., and Maser, J.D., Eds., New York: Wiley, 1997.

    Google Scholar 

  51. Rutter, M., Giller, H., and Hagell, A., Antisocial Behavior by Young People, Cambridge: Cambridge Univ. Press, 1998.

    Google Scholar 

  52. Keiley, M.K., Howe, T.R., Dodge, K.A., et al., The timing of child physical maltreatment: a cross-domain growth analysis of impact on adolescent externalizing and internalizing problems, Dev. Psychopathol., 2001, vol. 13, no. 4, pp. 891—912.

    Article  CAS  Google Scholar 

  53. Eysenck, H.J., Crime and Personality, London, UK: Routledge and Kegan Paul, 1964.

    Google Scholar 

  54. Raine, A., Autonomic nervous system activity and violence, in Aggression and Violence: Genetic, Neurobiological, and Biosocial Perspectives, Stoff, D.M. and Cairns, R.B., Eds., Mahwah, N.J.: Erlbaum, 1996, pp. 145—168.

    Google Scholar 

  55. Waltes, R., Chiocchetti, A.G., and Freitag, C.M., The neurobiological basis of human aggression: a review on genetic and epigenetic mechanisms, Am. J. Med. Genet.,Part B, 2016, vol. 171, pp. 650—675. https://doi.org/10.1002/ajmg.b.32388

    Article  Google Scholar 

  56. Lesch, K.P., Bengel, D., Heils, A., et al., Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region, Science, 1996, vol. 274, pp. 1527—1531.

    Article  CAS  Google Scholar 

  57. Hanna, G.L., Himle, J.A., Curtis, G.C., et al., Serotonin transporter and seasonal variation in blood serotonin in families with obsessive-compulsive disorder, Neuropsychopharmacology, 1998, vol. 18, pp. 102—111. https://doi.org/10.1016/S0893-133X(97)00097-3

    Article  CAS  PubMed  Google Scholar 

  58. Praschak-Rieder, N., Kennedy, J., Wilson, A.A., et al., Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study, Biol. Psychiatry, 2007, vol. 62, pp. 327—331. https://doi.org/10.1016/j.biopsych.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  59. Toshchakova, V.A., Bakhtiari, Y., Kulikov, A.V., et al., Association of polymorphisms of serotonin transporter (5HTTLPR) and 5-HT2C receptor genes with criminal behavior in Russian criminal offenders, Neuropsychobiology, 2017, vol. 75(4), pp. 200—210. https://doi.org/10.1159/000487484

    Article  CAS  PubMed  Google Scholar 

  60. Beitchman, J.H., Baldassarra, L., Mik, H., et al., Serotonin transporter polymorphisms and persistent, pervasive childhood aggression, Am. J. Psychiatry, 2006, vol. 163, pp. 1103—1105. https://doi.org/10.1176/ajp.2006.163.6.1103

    Article  PubMed  Google Scholar 

  61. Haberstick, B.C., Smolen, A., and Hewitt, J.K., Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children, Biol. Psychiatry, 2006, vol. 59, pp. 836—843. https://doi.org/10.1016/j.biopsych.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  62. Retz, W., Retz-Junginger, P., Supprian, T., et al., Association of serotonin transporter promoter gene polymorphism with violence: relation with personality disorders, impulsivity, and childhood ADHD psychopathology, Behav. Sci. Law, 2004, vol. 22, pp. 415—425. https://doi.org/10.1002/bsl.589

    Article  PubMed  Google Scholar 

  63. Ficks, C.A. and Waldman, I.D., Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR, Behav. Genet., 2014, vol. 44, no. 5, pp. 427—444. https://doi.org/10.1007/s10519-014-9661-y

    Article  PubMed  Google Scholar 

  64. Reif, A., Rösler, M., Freitag, C.M., et al., Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment, Neuropsychopharmacology, 2007, vol. 32, pp. 2375—2383. https://doi.org/10.1038/sj.npp.1301359

    Article  CAS  PubMed  Google Scholar 

  65. Baca-Garcia, E., Vaquero, C., Diaz-Sastre, C., et al., Lack of association between the serotonin transporter promoter gene polymorphism and impulsivity or aggressive behavior among suicide attempters and healthy volunteers, Psychiatry Res., 2004, vol. 126, pp. 99—106. https://doi.org/10.1016/j.psychres.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  66. Monuteaux, M.C., Biederman, J., Doyle, A.E., et al., Genetic risk for conduct disorder symptom subtypes in an ADHD sample: specificity to aggressive symptoms, J. Am. Acad. Child Adolesc. Psychiatry, 2009, vol. 48, pp. 757—764. https://doi.org/10.1097/CHI.0b013e3181a5661b

    Article  PubMed  Google Scholar 

  67. Hoyer, D., Clarke, D.E., Fozard, J.R., et al., International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin), Pharmacol. Rev., 1994, vol. 46, pp. 157—203.

    CAS  PubMed  Google Scholar 

  68. Bell, R. and Hobson, H., 5-HT1A receptor influences on rodent social and agonistic behavior: a review and empirical study, Neurosci. Biobehav. Rev., 1994, vol. 18, pp. 325—338.

    Article  CAS  Google Scholar 

  69. Olivier, B. and van Oorschot, R., 5-HT1B receptors and aggression: a review, Eur. J. Pharmacol., 2005, vol. 526, pp. 207—217. https://doi.org/10.1016/j.ejphar.2005.09.066

    Article  CAS  PubMed  Google Scholar 

  70. Lemonde, S., Turecki, G., Bakish, D., et al., Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide, J. Neurosci., 2003, vol. 23, pp. 8788—8799. https://doi.org/10.1523/JNEUROSCI.23-25-08788.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Strobel, A., Gutknecht, L., Rothe, C., et al., Allelic variation in 5-HT1A receptor expression is associated with anxiety- and depression-related personality traits, J. Neural Transm., 2003, vol. 110, pp. 1445—1453. https://doi.org/10.1007/s00702-003-0072-0

    Article  CAS  PubMed  Google Scholar 

  72. Serretti, A., Mandelli, L., Giegling, I., et al., HTR2C and HTR1A gene variants in German and Italian suicide attempters and completers, Am. J. Med. Genet.,Part. B, 2007, vol. 144B, pp. 291—299. https://doi.org/10.1002/ajmg.b.30432

    Article  CAS  Google Scholar 

  73. Duan, J., Sanders, A.R., Molen, J.E., et al., Polymorphisms in the 5’-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression, Mol. Psychiatry, 2003, vol. 8, pp. 901—910.https://doi.org/10.1038/sj.mp.4001403

    Article  CAS  PubMed  Google Scholar 

  74. Zouk, H., McGirr, A., Lebel, V., et al., The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide, Am. J. Med. Genet.,Part. B, 2007, vol. 144, pp. 996—1002. https://doi.org/10.1002/ajmg.b.30521

    Article  CAS  Google Scholar 

  75. Jensen, K.P., Covault, J., Conner, T.S., et al., A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors, Mol. Psychiatry, 2009, vol. 14, pp. 381—389. https://doi.org/10.1038/mp.2008.15

    Article  CAS  PubMed  Google Scholar 

  76. Conner, T.S., Jensen, K.P., Tennen, H., et al., Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men, Am. J. Med. Genet.,Part. B, 2010, vol. 153, pp. 67—78. https://doi.org/10.1002/ajmg.b.30955

    Article  CAS  Google Scholar 

  77. Giegling, I., Hartmann, A.M., Möller, H., and Rujescu, D., Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2A gene, J. Affect. Disord., 2006, vol. 96, pp. 75—81. https://doi.org/10.1016/j.jad.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  78. Preuss, U.W., Koller, G., Bondy, B., et al., Impulsive traits and 5-HT2A receptor promoter polymorphism in alcohol dependents: possible association but no influence of personality disorders, Neuropsychobiology, 2001, vol. 43, pp. 186—191.

    Article  CAS  Google Scholar 

  79. Banlaki, Z., Elek, Z., Nanasi, T., et al., Polymorphism in the serotonin receptor 2a (HTR2A) gene as possible predisposal factor for aggressive traits, PLoS One, 2015, vol. 10. e0117792. https://doi.org/10.1371/journal.pone.0117792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Griffiths-Jones, S., MiRBase: the microRNA sequence database, Meth. Mol. Biol., 2006, vol. 342, pp. 129—138. https://doi.org/10.1385/1-59745-123-1:129

    Article  CAS  Google Scholar 

  81. Griffiths-Jones, S., Saini, H.K., Dongen, S., and Enright, A.J., MiRBase: tools for microRNA genomics, Nucleic Acids Res., 2008, vol. 36, pp. 154—158.

    Article  Google Scholar 

  82. Kovacs-Nagy, R., Elek, Z., Szekely, A., et al., Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene, Am. J. Med. Genet.,Part. B, 2013, vol. 162, pp. 404—412. https://doi.org/10.1002/ajmg.b.32157

    Article  CAS  Google Scholar 

  83. Bevilacqua, L., Doly, S., Kaprio, J., et al., A population-specific HTR2B stop codon predisposes to severe impulsivity, Nature, 2010, vol. 468, pp. 1061—1066. https://doi.org/10.1038/nature09629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tiihonen, J., Rautiainen, M., Ollila, H.M., et al., Genetic background of extreme violent behavior, Mol. Psychiatry, 2015, vol. 20, pp. 786—792. https://doi.org/10.1038/mp.2014.130

    Article  CAS  PubMed  Google Scholar 

  85. Pavlov, K.A., Chistiakov, D.A., and Chekhonin, V.P., Genetic determinants of aggression and impulsivity in humans, J. Appl. Genet., 2012, vol. 53, pp. 61—82. https://doi.org/10.1007/s13353-011-0069-6

    Article  CAS  PubMed  Google Scholar 

  86. Seo, D., Patrick, C.J., and Kennealy, P.J., Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders, Aggress. Violent Behav., 2008, vol. 13, pp. 383—395. https://doi.org/10.1016/j.avb.2008.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  87. van Enkhuizen, J., Henry, B.L., Minassian, A., et al., Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder, Neuropsychopharmacology, 2014, vol. 39, no. 13, pp. 3112—3122. https://doi.org/10.1038/npp.2014.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Van Ness, S.H., Owens, M.J., and Kilts, C.D., The variable number of tandem repeats element in DAT regulates in vitro dopamine transporter density, BMC Genet., 2005, vol. 6, pp. 55—66. https://doi.org/10.1186/1471-2156-6-55

    Article  CAS  Google Scholar 

  89. Gerra, G., Garofano, L., Pellegrini, C., et al., Allelic association of a dopamine transporter gene polymorphism with antisocial behavior in heroin-dependent patients, Addict. Biol., 2005, vol. 10, pp. 275—281. https://doi.org/10.1080/13556210500223769

    Article  CAS  PubMed  Google Scholar 

  90. Sweet, R.A., Nimgaonkar, V.L., Kamboh, M.I., et al., Dopamine receptor genetic variation, psychosis, and aggression in Alzheimer disease, Arch. Neurol., 1998, vol. 55, pp. 1335—1340.

    Article  CAS  Google Scholar 

  91. Zai, C.C., Ehtesham, S., Choi, E., et al., Dopaminergic system genes in childhood aggression: possible role for DRD2, World J. Biol. Psychiatry, 2012, vol. 13, pp. 65—74. https://doi.org/10.3109/15622975.2010.543431

    Article  PubMed  Google Scholar 

  92. Sweet, R.A., Nimgaonkar, V.L., Kamboh, M.I., et al., Evidence for epistasis between the 5-HTTLPR and the dopamine D4 receptor polymorphisms in externalizing behavior among 15-year-olds, J. Neural Transm., 2009, vol. 116, pp. 1621—1629. https://doi.org/10.1007/s00702-009-0290-1

    Article  CAS  Google Scholar 

  93. Gogos, J.A., Morgan, M., Luine, V., et al., Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 9991—9996.

    Article  CAS  Google Scholar 

  94. Lachman, H.M., Does COMT val 158met affect behavioral phenotypes: yes, no, maybe?, Neuropsychopharmacology, 2008, vol. 33, pp. 3027—3029.

    Article  CAS  Google Scholar 

  95. Rujescu, D., Giegling, I., Gietl, A., et al., A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits, Biol. Psychiatry, 2003, vol. 54, pp. 34—39.

    Article  CAS  Google Scholar 

  96. Tosato, S., Bonetto, C., Di Forti, M., et al., Effect of COMT genotype on aggressive behaviour in a community cohort of schizophrenic patients, Neurosci. Lett., 2011, vol. 495, pp. 17—21. https://doi.org/10.1016/j.neulet.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  97. Perroud, N., Jaussent, I., Guillaume, S., et al., COMT but not serotonin related genes modulates the influence of childhood abuse on anger traits, Genes, Brain Behav., 2010, vol. 9, pp. 193—202. https://doi.org/10.1111/j.1601-183X.2009.00547.x

    Article  CAS  Google Scholar 

  98. Hirata, Y., Zai, C.C., Nowrouzi, B., et al., Study of the catechol-o-methyltransferase (COMT) gene with high aggression in children, Aggress. Behav., 2013, vol. 39, pp. 45—51. https://doi.org/10.1002/ab.21448

    Article  PubMed  Google Scholar 

  99. Shih, J.C., Chen, K., and Ridd, M.J., Monoamine oxidase: from genes to behavior, Annu. Rev. Neurosci., 1999, vol. 22, pp. 197—217.

    Article  CAS  Google Scholar 

  100. Kalgutkar, A.S., Dalvie, D.K., Castagnoli, N., and Taylor, T.J., Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors, Chem. Res. Toxicol., 2001, vol. 14, pp. 1139—1162. https://doi.org/10.1021/tx010073b

    Article  CAS  PubMed  Google Scholar 

  101. Sabol, S.Z., Hu, S., and Hamer, D., A functional polymorphism in the monoamine oxidase A gene promoter, Hum. Genet., 1998, vol. 103, pp. 273—279.

    Article  CAS  Google Scholar 

  102. Deckert, J., Catalano, M., Syagailo, Y.V., et al., Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder, Hum. Mol. Genet., 1999. (8), pp. 621—624.

  103. Guo, G., Ou, X., Roettger, M., and Shih, J.C., The VNTR2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity, Eur. J. Hum. Genet., 2008, vol. 16, pp. 626—634. https://doi.org/10.1038/sj.ejhg.5201999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beaver, K.M., DeLisi, M., Vaughn, M.G., and Barnes, J.C., Monoamine oxidase A genotype is associated with gang membership and weapon use, Compr. Psychiatry, 2010, vol. 51, pp. 130—134. https://doi.org/10.1016/j.comppsych.2009.03.010

    Article  PubMed  Google Scholar 

  105. Beaver, K.M., Wright, J.P., Boutwell, B.B., et al., Exploring the association between the 2-repeat allele of the MAOA gene promoter polymorphism and psychopathic personality traits, arrests, incarceration, and lifetime antisocial behavior, Pers. Individ. Dif., 2013, vol. 54, pp. 164—168. https://doi.org/10.1016/j.paid.2012.08.014

    Article  Google Scholar 

  106. Beaver, K.M., Barnes, J.C., and Boutwell, B.B., The 2-repeat allele of the MAOA gene confers an increased risk for shooting and stabbing behaviors, Psychiatr. Q., 2014, vol. 85, pp. 257—265. https://doi.org/10.1007/s11126-013-9287-x

    Article  PubMed  Google Scholar 

  107. Manuck, S.B., Flory, J.D., Ferrell, R.E., et al., A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity, Psychiatry Res., 2000, vol. 95, pp. 9—23. https://doi.org/10.1016/S0165-1781(00)00162-1

    Article  CAS  PubMed  Google Scholar 

  108. Verhoeven, F.E.A., Booij, L., Kruijt, A., et al., The effects of MAOA genotype, childhood trauma, and sex on trait and state dependent aggression, Brain Behav., 2012, vol. 2, pp. 806—813.

    Article  Google Scholar 

  109. Holz, N., Boecker, R., Buchmann, A.F., et al., Evidence for a sex-dependent MAOA childhood stress interaction in the neural circuitry of aggression, Cereb. Cortex, 2016, vol. 26, no. 3, pp. 904—914. https://doi.org/10.1093/cercor/bhu249

    Article  PubMed  Google Scholar 

  110. Beitchman, J.H., Mik, H.M., Ehtesham, S., et al., MAOA and persistent, pervasive childhood aggression, Mol. Psychiatry, 2004, vol. 9, pp. 546—547.

    Article  CAS  Google Scholar 

  111. Tikkanen, R., Ducci, F., Goldman, D., et al., MAOA alters the effects of heavy drinking and childhood physical abuse on risk for severe impulsive acts of violence among alcoholic violent offenders, Alcohol.: Clin. Exp. Res., 2010, vol. 34, pp. 853—860. https://doi.org/10.1111/j.1530-0277.2010.01157.x8

  112. Kolla, N.J., Attard, S., Craig, G., et al., Monoamine oxidase A alleles in violent offenders with antisocial personality disorder: high activity associated with proactive aggression, Crim. Behav. Ment. Health, 2014, vol. 24, pp. 368—372.

    Article  Google Scholar 

  113. McDermott, R., Tingley, D., Cowden, J., et al., Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 2118—2123. https://doi.org/10.1073/pnas.0808376106

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kuepper, Y., Grant, P., Wielpuetz, C., and Hennig, J., MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation, Behav. Brain Res., 2013, vol. 247, pp. 73—78. https://doi.org/10.1016/j.bbr.2013.03.002

    Article  PubMed  Google Scholar 

  115. Pickles, A., Hill, J., Breen, G., et al., Evidence for interplay between genes and parenting on infant temperament in the first year of life: monoamine oxidase A polymorphism moderates effects of maternal sensitivity on infant anger proneness, J. Child Psychol. Psychiatry, 2013, vol. 54, pp. 1308—1317. https://doi.org/10.1111/jcpp.12081

    Article  PubMed  Google Scholar 

  116. Beaver, K.M., Connolly, E.J., Nedelec, J.L., and Schwartz, J.A., On the genetic and genomic basis of aggression, violence, and antisocial behavior, Oxford Handbook of Evolution, Biology, and Society, Hopcroft, R.L., Ed., Oxford, 2018. https://doi.org/10.1093/oxfordhb/9780190299323.013.15

    Google Scholar 

  117. Schwartz, J.A. and Beaver, K.M., Exploring whether genetic differences between siblings explain sibling differences in criminal justice outcomes, Compr. Psychiatry, 2014, vol. 55, pp. 90—103.

    Article  Google Scholar 

  118. Pappa, I., St Pourcain, B., Benke, K., et al., A genome-wide approach to children’s aggressive behavior: the EAGLE consortium, Am. J. Med. Genet.,Part. B, 2016, vol. 171, no. 5, pp. 562—572.

    CAS  Google Scholar 

  119. Fernandez-Castillo, N. and Cormand, B., Aggressive behavior in humans: genes and pathways identified through association studies, Am. J. Med. Genet.,Part. B, 2016, vol. 171, no. 5, pp. 676—696.

    CAS  Google Scholar 

  120. Vassos, E., Collier, D.A., and Fazel, S., Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression, Mol. Psychiatry, 2014, vol. 19, pp. 471—477. https://doi.org/10.1038/mp.2013.31

    Article  CAS  PubMed  Google Scholar 

  121. Børglum, A.D., Demontis, D., Grove, J., et al., Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci, Mol. Psychiatry, 2014, vol. 19, pp. 325—333.

    Article  Google Scholar 

  122. Xu, W., Cohen-Woods, S., Chen, Q., et al., Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1, BMC Med. Genet., 2014, vol. 15, p. 2.https://doi.org/10.1186/1471-2350-15-2

  123. Rittschof, C.C., Bukhari, S.A., Sloofman, L.G., et al., Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 17929—17934. https://doi.org/10.1073/pnas.1420369111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang-James, Y., Fernandez-Castillo, N., Hess, J.L., et al., An integrated analysis of genes and functional pathways for aggression in human and rodent models, Mol. Psychiatry, 2018. https://www.researchgate.net/publication/325513139. https://doi.org/10.1038/s41380-018-0068-7

    Article  Google Scholar 

  125. Perry, B.D. and Pollard, R., Homeostasis, stress, trauma, and adaptation: a neurodevelopmental view of childhood trauma, Child Adolesc. Psychiatr. Clin. N. Am., 1998, vol. 7, no. 1, pp. 33—51. https://doi.org/10.1016/S1056-4993(18)30258-X

    Article  CAS  PubMed  Google Scholar 

  126. Caspi, A., McClay, J., Moffitt, T.E., et al., Role of genotype in the cycle of violence in maltreated children, Science, 2002, vol. 297, no. 5582, pp. 851—854. https://doi.org/10.1126/science.1072290

    Article  CAS  PubMed  Google Scholar 

  127. Kim-Cohen, J., Caspi, A., Taylor, A., et al., MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis, Mol. Psychiatry, 2006, vol. 11, pp. 903—913.

    Article  CAS  Google Scholar 

  128. Byrd, A.L. and Manuck, S.B., MAOA, childhood maltreatment, and antisocial behaviors: meta-analysis of a gene—environment interaction, Biol. Psychiatry, 2014, vol. 75, pp. 9—17.

    Article  CAS  Google Scholar 

  129. Beaver, K.M., Environmental moderators of genetic influences on adolescence delinquent involvement and victimization, J. Adolesc. Res., 2011, vol. 26, pp. 84—114. https://doi.org/10.1177/0743558410384736

    Article  Google Scholar 

  130. Belsky, J. and Pluess, M., Beyond diathesis stress: differential susceptibility to environmental influences, Psychol. Bull., 2009, vol. 135(6), pp. 885—908. https://doi.org/10.1037/a0017376

    Article  PubMed  Google Scholar 

  131. Iofrida, C., Palumbo, S., and Pellegrini, S., Molecular genetics and antisocial behavior where do we stand?, Exp. Biol. Med. (Maywood), 2014, vol. 239, no. 11, pp. 1514—1523. https://doi.org/10.1177/1535370214529508

    Article  CAS  Google Scholar 

  132. Booij, L., Tremblay, R.E., Provençal, N., et al., The developmental origins of chronic physical aggression: biological pathways triggered by early life adversity, J. Exp. Biol., 2015, vol. 218, pp. 123—133. https://doi.org/10.1242/jeb.111401

    Article  PubMed  Google Scholar 

  133. Ouellet-Morin, I., Wong, C.C.Y., Danese, A., et al., Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins, Psychol. Med., 2013, vol. 43, pp. 1813—1823. https://doi.org/10.1017/S0033291712002784

    Article  CAS  PubMed  Google Scholar 

  134. Wang, D., Szyf, M., Benkelfat, C., et al., Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression, PLoS One, 2012, vol. 7, no. 6.https://doi.org/10.1371/journal.pone.0039501

    Article  CAS  Google Scholar 

  135. Guillemin, C., Provencal, N., Suderman, M., et al., DNA methylation signature of childhood chronic physical aggression in T cells of both men and women, PLoS One, 2014, vol. 9(1). e86822, pp. 1—16. https://doi.org/10.1371/journal.pone.0086822

    Article  Google Scholar 

  136. Checknita, D., Maussion, G., Labonte, B., et al., Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder, Br. J. Psychiatry, 2015, vol. 206, no. 3, pp. 216—222. https://doi.org/10.1192/bjp.bp.114.144964

    Article  CAS  PubMed  Google Scholar 

  137. Yin, Y., Morgunova, E., Jolma, A., et al., Impact of cytosine methylation on DNA binding specificities of human transcription factors, Science, 2017, vol. 356, p. 6337. pii: eaaj2239. https://doi.org/10.1126/science.aaj2239

    Article  Google Scholar 

  138. Maunakea, A.K., Chepelev, I., Cui, K., and Zhao, K., Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition, Cell Res., 2013, vol. 23, pp. 1256—1269. https://doi.org/10.1038/cr.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kalsotra, A. and Cooper, T.A., Functional consequences of developmentally regulated alternative splicing, Nat. Rev. Genet., 2011, vol. 12, pp. 715—729. https://doi.org/10.1038/nrg3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shukla, S., Kavak, E., Gregory, M., et al., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing, Nature, 2011, vol. 479, pp. 74—79. https://doi.org/10.1038/nature10442

    Article  CAS  PubMed  Google Scholar 

  141. Márquez, C., Poirier, G.L., Cordero, M.I., et al., Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression, Transl. Psychiatry, 2013. 3. e216. https://doi.org/10.1038/tp.2012.144

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bannister, A.J. and Kouzarides, T., Regulation of chromatin by histone modifications, Cell Res., 2011, vol. 21, pp. 381—395. https://doi.org/10.1038/cr2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Arsenault, S.V., Hunt, B.G., and Rehan, S.M., The effect of maternal care on gene expression and DNA methylation in a subsocial bee, Nat. Commun., 2018, vol. 9, pp. 1—9, article number 3468. https://doi.org/10.1038/s41467-018-05903-0

  144. Palumbo, S., Mariotti, V., Iofrida, C., and Pellegrini, S., Genes and aggressive behavior: epigenetic mechanisms underlying individual susceptibility to aversive environments, Front. Behav. Neurosci., 2018, vol. 12, pp. 117—125. https://doi.org/10.3389/fnbeh.2018.00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hagenbeek, F.A., Kluft, C., Hankemeier, T., et al., Discovery of biochemical biomarkers for aggression: a role for metabolomics in psychiatry, Am. J. Med. Genet.,Part. B, 2016, vol. 171, no. 5, pp. 719—732. https://doi.org/10.1002/ajmg.b.32435

    Article  Google Scholar 

  146. Nizhnikov, A.A., Antonets, K.S., and Inge-Vechtomov, S.G., Amyloids: from pathogenesis to function, Biochemistry (Moscow), 2015, vol. 80, no. 9, pp. 1127—1144. https://doi.org/10.1134/S0006297915090047

    Article  CAS  PubMed  Google Scholar 

  147. Schmitz, M., Zafar, S., Silva, C.J., and Zerr, I., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton, Prion, 2014, vol. 8, pp. 381—386. https://doi.org/10.4161/19336896.2014.983746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Program of Union State “DNA Identification.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Dragovich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragovich, A.Y., Borinskaya, S.A. Genetic and Genomic Basis of Aggressive Behavior. Russ J Genet 55, 1445–1459 (2019). https://doi.org/10.1134/S1022795419090059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419090059

Keywords:

Navigation