Skip to main content
Log in

Structural Organization and Functional Activity of the Orthologous TaGLW7 Genes in Bread Wheat (Triticum aestivum L.)

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

It is reported that GLW7 encoding the transcription factor OsSPL13, positively regulates grain size and shape in rice. We have limited knowledge about its orthologs in wheat. Here, based on the rice OsGLW7 we isolated and identified the TaGLW7 gene in wheat, characterized its nucleotide and protein structures, predicted the cis-elements of its promoter, analyzed its expression patterns. The orthologs in barley (HvGLW7), Brachypodium (BdGLW7), wild emmer (TtGLW7), Aegilops tauschii (AtGLW7) were also used for comparative analysis. As predicated, TaGLW7, HvGLW7, TtGLW7, and AtGLW7 were mapped onto group 2 chromosomes in the respective species. Multiple alignments indicated GLW7 possesses two exons and one intron in the analyzed species. GLW7 contains a conserved domain SBP and two neighboring low complexity regions. GLW7 was highly expressed in spike organs including wheat young spikes, barley inflorescence, and rice anthers. Additionally, biotic stress significantly down-regulated GLW7 in wheat and barley. Significant correlations between the expression patterns of predicted transcription factor ABF2 and TaGLW7 were detected. In conclusion, the conserved structure and expression of GLW7 among the investigated species and the predicted transcription factors significantly related to GLW7 are helpful for further manipulating GLW7 and uncovering its roles in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hawkesford, M., Araus, J., Park, R., et al., Prospects of doubling global wheat yields, Food Energy Secur., 2013, vol. 2, no. 1, pp. 34—48.

    Article  Google Scholar 

  2. Marcussen, T., Sandve, S., Heier, L., et al., Ancient hybridizations among the ancestral genomes of bread wheat, Science, 2014, vol. 345, no. 6194, p.1250092.

    Article  CAS  PubMed  Google Scholar 

  3. Godfray, H.C., Beddington, et al., Food security: the challenge of feeding 9 billion people, Science, 2010, vol. 327, no. 5967, p. 812.

    Article  CAS  PubMed  Google Scholar 

  4. Ma, J., Ding, P., Qin, P., et al., Structure and expression of the TaGW7 in bread wheat (Triticum aestivum L.), Plant Growth Regul., 2017, vol. 82, no. 6, pp. 1—11.

    Article  CAS  Google Scholar 

  5. Si, L., Chen, J., Huang, X., et al., OsSPL13 controls grain size in cultivated rice, Nat. Genet., 2016, vol. 48, no. 4, pp. 447—456.

    Article  CAS  PubMed  Google Scholar 

  6. Ramya, P., Chaubal, A., Kulkarni, K., et al., QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.), J. Appl. Genet., 2010, vol. 51, no. 4, pp. 421—429.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao, Y., He, S., Yan, J., et al., Molecular mapping of quantitative trait loci for kernel morphology traits in a non-1BL.1RS × 1BL.1RS wheat cross, Crop Pasture Sci., 2011, vol. 62, no. 8, pp. 625—638.

    Article  Google Scholar 

  8. Okamoto, Yuki, Nguyen, et al., Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines, Breed. Sci., 2013, vol. 63, no. 4, pp. 423—429.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cui, F., Zhao, C., Ding, A., et al., Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations, Theor. Appl. Genet., 2014, vol. 127, no. 3, p. 659.

    Article  PubMed  Google Scholar 

  10. Wu, Q., Chen, Y., Zhou, S., et al., High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 × Beinong6, PLoS One, 2015, vol. 10, no. 2. e0118144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su, Z., Jin, S., Lu, Y., et al., Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat, Mol. Breed., 2016, vol. 36, no. 2, pp. 1—11.

    Article  CAS  Google Scholar 

  12. Cheng, R., Kong, Z., Zhang, L., et al., Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population, Theor. Appl. Genet., 2017, 2016, vol. 130, no. 7, pp. 1405—1414.

  13. Choi, H., Mun, J., Kim, D., et al., Estimating genome conservation between crop and model legume species, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 43, pp.15289—15294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vogel, J.P., Garvin, D.F., Mockler, T.C., et al., Genome sequencing and analysis of the model grass Brachypodium distachyon, Nature, 2010, vol. 463, no. 7283, pp. 763—768.

    Article  CAS  Google Scholar 

  15. Mao, H., Sun, S., Yao, J., et al., Linking differential domain functions of the GS3 protein to natural variation of grain size in rice, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 45, pp. 19579—19584.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song, X., Huang, W., Shi, M., et al., A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase, Nat. Genet., 2007, vol. 39, no. 5, pp. 623—630.

    Article  CAS  PubMed  Google Scholar 

  17. Kato, T., Segami, S., Toriyama, M., et al., Detection of QTLs for grain length from large grain rice (Oryza sativa L.), Breed. Sci., 2011, vol. 31, no. 3, pp. 269—274.

    Article  CAS  Google Scholar 

  18. Shao, G., Wei, X., Chen, M., et al., Allelic variation for a candidate gene for GS7, responsible for grain shape in rice, Theor. Appl. Genet., 2012, vol. 125, no. 6, pp.1303—1312.

    Article  PubMed  Google Scholar 

  19. Wang, S., Li, S., Liu, Q., et al., The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality, Nat. Genet., 2015, vol. 47, no. 8, p. 949.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., Xiong, G., Hu, J., et al., Copy number variation at the GL7 locus contributes to grain size diversity in rice, Nat. Genet., 2015, vol. 47, no. 8, p. 944.

    Article  CAS  PubMed  Google Scholar 

  21. Guo, L., Ma, L., Jiang, H., et al., Genetic analysis and fine mapping of two genes for grain shape and weight in rice, Bull. Bot., 2009, vol. 51, no. 1, pp. 45—51.

    CAS  Google Scholar 

  22. Zhao, D., Li, Q., Zhang, C., et al., GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality, Nat. Commun., 2018, vol. 9, no. 1, p. 1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu, Z., Lu, S., Wang, M., et al., A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice, Mol. Plant, 2018, vol. 11, no. 5, pp. 736—749.

    Article  CAS  PubMed  Google Scholar 

  24. Xia, D., Zhou, H., Liu, R., et al., GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice, Mol. Plant, 2018, vol. 11, no. 5, p. 754.

    Article  CAS  PubMed  Google Scholar 

  25. Ying, J., Ma, M., Bai, C., et al., TGW3, a major QTL that negatively modulates grain length and weight in rice, Mol. Plant, 2018, vol. 11, no. 5, pp. 750—753.

    Article  CAS  PubMed  Google Scholar 

  26. Mayer, K., Rogers, J., Doležel, J., et al., A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, 2014, vol. 345, no. 6194, p. 1251788.

    Article  CAS  Google Scholar 

  27. Dong, L., Wang, F., Liu, T., et al., Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions, Mol. Plant, 2014, vol. 34, no. 2, pp. 937—947.

    CAS  Google Scholar 

  28. Zhang, H., Ma, J., Liu, J., et al., Molecular characterization of the TaWTG1 in bread wheat (Triticum aestivum L.), Gene, 2018, vol. 678, pp. 23—32.

    Article  CAS  PubMed  Google Scholar 

  29. Mayer, K.F.X., Rogers, J., Doležel, J., et al., A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, 2014, vol. 345, no. 6194, p. 1251788.

    Article  CAS  Google Scholar 

  30. Avni, R., Nave, M., Barad, O., et al., Wild emmer genome architecture and diversity elucidate wheat evolution and domestication, Science, 2017, vol. 357, no. 6346, p. 93.

    Article  CAS  PubMed  Google Scholar 

  31. Schulman, A.H., Hastie, A., Houben, A., et al., A chromosome conformation capture ordered sequence of the barley genome, Nature, 2017, vol. 544, no. 7651, pp. 427—433.

    Article  CAS  PubMed  Google Scholar 

  32. Luo, M.C., Gu, Y.Q., Puiu, D., et al., Genome sequence of the progenitor of the wheat D genome Aegilops tauschii, Nature, 2017, vol. 551, no. 7681, p. 498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murray, M. and Thompson, F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, no. 19, pp. 4321—4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725—2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, B., Jin, J., Guo, A., et al., GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics, 2014, vol. 31, no. 8, p. 1296.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Letunic, I., Doerks, T. and Bork, P., SMART: recent updates, new developments and status in 2015, Nucleic Acids Res., 2015, vol. 43, pp. 257—260.

    Article  CAS  Google Scholar 

  37. Lescot, M., Déhais, P., Thijs, G., et al., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic Acids Res., 2002, vol. 30, no. 1, pp. 325—327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia, L., Zou, D., Sang, J., et al., Rice Expression Database (RED): an integrated RNA-Seq-derived gene expression database for rice, J. Genet. Genomics, 2017, vol. 44, no. 5, pp. 235—241.

    Article  PubMed  Google Scholar 

  39. Borrill, P., Ramirez-Gonzalez, R., and Uauy, C., expVIP: a customisable RNA-seq data analysis and visualisation platform opens up gene expression analysis, Plant Physiol., 2016, vol. 170, no. 4, p. 2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pearce, S., Vazquezgross, H., Herin, S., et al., WheatExp: an RNA-seq expression database for polyploid wheat, BMC Plant Biol., 2015, vol. 15, no. 1, p. 299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zadoks, J., Chang, T., and Konzak, F., A decimal code for the growth stages of cereals, Weed Res., 2010, vol. 14, no. 6, pp. 415—421.

    Article  Google Scholar 

  42. Zhai, H., Feng, Z., Du, X., et al., A novel allele of TaGW2-A1, is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum, L.), Theor. Appl. Genet., 2018, vol. 131, no. 3, pp. 539—553.

    Article  CAS  PubMed  Google Scholar 

  43. Klein, J., Saedler, H. and Huijser, P., A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA, Mol. Gen. Genet., 1996, vol. 250, no. 1, pp. 7—16.

    CAS  PubMed  Google Scholar 

  44. Rushton, J., Torres, J., Parniske, M., et al., Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes, Embo J., 1996, vol. 15, no. 20, pp. 5690—5700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Messenguy, F. and Dubois, E., Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development, Gene, 2003, vol. 316, no. 1, pp. 1—21.

    Article  CAS  PubMed  Google Scholar 

  46. Gao, S., Gao, J., Zhu, X., et al., ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis, Mol. Plant, 2016, vol. 9, no. 9, pp. 1272—1285.

    Article  CAS  PubMed  Google Scholar 

  47. Cai, C., Guo, W., and Zhang, B., Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton, Sci. Rep., 2018, vol. 8, no. 1, p. 762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, S., Kang, J., Park, H., et al., DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity, Plant Physiol., 2010, vol. 153, no. 2, pp. 716—727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Cristobal Uauy and Dr. Philippa Borrill for providing the wheat transcriptome data. We appreciate the anonymous referees for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Ma or X. J. Lan.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C.C., Ma, J., Li, T. et al. Structural Organization and Functional Activity of the Orthologous TaGLW7 Genes in Bread Wheat (Triticum aestivum L.). Russ J Genet 55, 571–579 (2019). https://doi.org/10.1134/S1022795419050168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050168

Keywords:

Navigation