Skip to main content
Log in

In silico and Expression Profile Analyses of the ERF Subfamily in Melon

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Ethylene-responsive factors (ERFs) are a subfamily of the AP2/ERF superfamily and a group of plant-specific transcription factors involved in many plant growth and development regulatory processes. However, few information about the function of ERFs in melon. To identify ERFs that may play a role in the growth and development of melon, using bioinformatics, we investigated their physicochemical properties, subcellular localization, signal peptides, promoter elements, and chromosomal location. Eighty-three promoter elements were predicted at 1500 bp upstream of their related genes. The chromosomal results suggested 64 ERFs are distributed among 12 chromosomes. On the basis of a multiple sequence alignment, phylogenetic analysis was conducted for all the ERF proteins in melon, arabidopsis (Arabidopsis thaliana) and tomato. Nine distinct groups were identified, and melon ERFs occurred within eight clades. Furthermore, the expression profiles of the genes in different tissues were investigated using quantitative real-time PCR (qRT-PCR). The results showed that 63, 57, and 54 ERF genes were expressed in distinct vegetative organs, fruits at different days after pollination (DAP), and fruits during the respiratory climacteric, respectively. Among those genes, CmERFIII-1 which was a valuable gene for studying its function in melon exhibited the highest expression in different tissues. Another very interesting gene was CmERFIV-2, which was the only gene whose expression was the highest in root in all highly expressed genes. Furthermore, four genes from the fourth subset (CmERFIV-2, IV-3, IV-4 and IV-5) were highly expressed in fruits at different developmental stages. Together, these results will aid future functional analysis of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hu, L. and Liu, S., Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers, Genet. Mol. Biol., 2011, vol. 34, no. 4, pp. 624—633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rao, G., Sui, J., Zeng, Y., et al., Genome-wide analysis of the AP2/ERF gene family in Salix arbutifolia, FEBS Open Bio, 2015, vol. 5, pp. 132—137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhuang, J., Cai, B., Peng, R., et al., Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa, Biochem. Biophys. Res. Commun., 2008, vol. 371, no. 3, pp. 468—474.

    Article  CAS  PubMed  Google Scholar 

  4. Sakuma, Y., Liu, Q., Dubouzet, J., et al., DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression, Biochem. Biophys. Res. Commun., 2002, vol. 290, no. 3, pp. 998—1009.

    Article  CAS  PubMed  Google Scholar 

  5. Ohme-Takagi, M. and Shinshi, H., Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element, Plant Cell, 1995, vol. 7, no. 2, pp. 173—182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hao, D., Ohme-Takagi, M., and Sarai, A., Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant, J. Biol. Chem., 1998, vol. 273, no. 41, pp. 26857—26861.

    Article  CAS  PubMed  Google Scholar 

  7. Riechmann, J. L., Heard, J., Martin, G., et al., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science, 2000, vol. 290, no. 5499, pp. 2105—2110.

    Article  CAS  PubMed  Google Scholar 

  8. Nakano, T., Suzuki, K., Fujimura, T., et al., Genome-wide analysis of the ERF gene family in Arabidopsis and rice, Plant Physiol., 2006, vol. 140, no. 2, p. 411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamasaki, Kazuhiko, Kigawa, et al., DNA-binding domains of plant-specific transcription factors: structure, function, and evolution, Trends Plant Sci., 2013, vol. 18, no. 5, pp. 267—276.

    Article  CAS  PubMed  Google Scholar 

  10. Fujimoto, S. Y., Ohta, M., Usui, A., et al., Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression, Plant Cell, 2000, vol. 12, no. 3, p. 393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohta, M., Matsui, K., Hiratsu, K., et al., Repression domains of class II ERF transcriptional repressors share an essential motif for active repression, Plant Cell, 2001, vol. 13, no. 8, pp. 1959—1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, J. G., Stork, W., and Mudgett, M.B., Xanthomonas type III effector Xopd desumoylates tomato transcription factor SLERF4 to suppress ethylene responses and promote pathogen growth, Cell Host Microbe, 2013, vol. 13, no. 2, p. 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng, X., Xu, J., He, Y., et al., Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance, Plant Cell, 2013, vol. 25, no. 3, pp. 1126—1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng, M. C., Liao, P. M., Kuo, W. W., et al., The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals, Plant Physiol., 2013, vol. 162, no. 3, p. 1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dubois, M., Skirycz, A., Claeys, H., et al., Ethylene Response Factor 6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis, Plant Physiol., 2013, vol. 162, no. 1, p. 319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhai, Y., Wang, Y., Li, Y., et al., Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco, Gene, 2013, vol. 513, no. 1, pp. 174—183.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, Z.S., Xia, L.Q., Chen, M., et al., Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance, Plant Mol. Biol., 2007, vol. 65, no. 6, pp. 719—732.

    Article  CAS  PubMed  Google Scholar 

  18. Rong, W., Qi, L., Wang, A., et al., The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat, Plant Biotechnol. J., 2014, vol. 12, no. 4, p. 468.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, D., Ji, J., Wang, G., et al., LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco, Plant Cell Rep., 2014, vol. 33, no. 12, pp. 2033—2045.

    Article  CAS  PubMed  Google Scholar 

  20. Dong, W., Ai, X., Xu, F., et al., Isolation and characterization of a bread wheat salinity responsive ERF transcription factor, Gene, 2012, vol. 511, no. 1, pp. 38—45.

    Article  CAS  PubMed  Google Scholar 

  21. Dong, L., Cheng, Y., Wu, J., et al., Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean, J. Exp. Bot., 2015, vol. 66, no. 9, p. 2635.

    Article  CAS  PubMed  Google Scholar 

  22. Lu, X., Zhang, L., Zhang, F., et al., AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea, New Phytol., 2013, vol. 198, no. 4, pp. 1191—1202.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, M., Pirrello, J., Kesari, R., et al., A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. Plant J., 2013, vol. 76, no. 3, pp. 406—419.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, M., Gianfranco, D., Julien, P., et al., The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening, New Phytol., 2014, vol. 203, no. 1, pp. 206—218.

    Article  CAS  PubMed  Google Scholar 

  25. Min, T., Yin, X., Shi, Y., et al., Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency, J. Exp. Bot., 2012, vol. 63, no. 18, p. 6393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin, X., Allan, A. C., Chen, K., et al., Kiwifruit EIL and ERF genes involved in regulating fruit ripening, Plant Physiol., 2010, vol. 153, no. 3, p. 1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiao, Y., Chen, J., Kuang, J., et al., Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes, J. Exp. Bot., 2013, vol. 64, no. 8, p. 2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma, Y., Zhang, F., Bade, R., et al., Genome-wide identification and phylogenetic analysis of the ERF gene family in melon, J. Plant Growth Regul., 2015, vol. 34, no. 1, pp. 66—77.

    Article  CAS  Google Scholar 

  29. Sharma, M.K., Kumar, R., Solanke, A.U., et al., Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato, Mol. Genet. Genomics, 2010, vol. 284, no. 6, pp. 455—475.

    Article  CAS  PubMed  Google Scholar 

  30. Tang, Z., Blacquiere, G., and Leus, G., Clustal W and Clustal X version 2.0, Bioinformatics, 2007, vol. 23, no. 21, pp. 2947—2948.

    Article  CAS  Google Scholar 

  31. Tamura, K., Stecher, G., Peterson, D., et al., Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725—2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, R.H. and Meng, J.L., MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data, Hereditas, 2003, vol. 25, no. 3, p. 317.

    PubMed  Google Scholar 

  33. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods (San Diego, California), 2001, vol. 25, no. 4, pp. 402—408.

    Article  CAS  Google Scholar 

  34. Saeed, A.I., Sharov, V., White, J., et al., TM4: a free, open-source system for microarray data management and analysis, Biotechniques, 2003, vol. 34, no. 2, pp. 374—378.

    Article  CAS  PubMed  Google Scholar 

  35. Ikai, A., Thermostability and aliphatic index of globular proteins, J. Biochem., 1980, vol. 88, no. 6, pp. 1895—1898.

    CAS  PubMed  Google Scholar 

  36. Guruprasad, K., Reddy, B.V.B., and Pandit, M.W., Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence, Protein Eng., 1990, vol. 4, no. 2, pp. 155—161.

    Article  CAS  PubMed  Google Scholar 

  37. Licausi, F., Giorgi, F.M., Zenoni, S., et al., Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera, BMC Genomics, 2010, vol. 11, no. 1, p. 719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Papdi, C., Pérezsalamó, I., Joseph, M.P., et al., The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor-VII genes Rap2.12, Rap2.2 and Rap2.3, Plant J., 2015, vol. 82, no. 5, pp. 772—784.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, W., Li, Q., Wang, Y., et al., Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera, Biochem. Biophys. Res. Commun., 2017, vol. 491, no. 3.

  40. Li, Y., Zhu, B., Xu, W., et al., LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato, Plant Cell Rep., 2007, vol. 26, no. 11, p. 1999.

    Article  CAS  PubMed  Google Scholar 

  41. Upadhyay, R.K., Soni, D.K., Singh, R., et al., SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth, J. Exp. Bot., 2013, vol. 64, no. 11, pp. 3237—3247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, M., Lima, G.B., Mila, I., et al., Comprehensive profiling of ethylene response factors expression identifies ripening-associated ERF genes and their link to key regulators of fruit ripening in tomato (Solanum lycopersicum), Plant Physiol., 2016, vol. 170, no. 3, p. 1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Niu or A. Hasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Saren, Q., Hao, J. et al. In silico and Expression Profile Analyses of the ERF Subfamily in Melon. Russ J Genet 55, 557–570 (2019). https://doi.org/10.1134/S1022795419050090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050090

Keywords:

Navigation