Skip to main content
Log in

Genes Encoding Hevein-Like Antimicrobial Peptides from Elytrigia repens (L.) Desv. ex Nevski

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Earlier, we discovered a gene family encoding hevein-like antimicrobial peptides (WAMP) in the highly resistant wheat species Triticum kiharae Dorof. et Migusch. and related species of the Triticum and Aegilops genera. These peptides suppress growth and development of fungi and bacteria by inhibition of secreted metalloproteinases of the pathogens. In this study, we analyzed wamp homologs in the wild cereal Elytrigia repens Desv. ex Nevski, which is an invasive weed. The wamp homologs were isolated by PCR with E. repens genomic DNA or cDNA and primers specific to the wheat wamp genes. The nucleotide sequences of three novel E. repenswamp genes encoding the precursors of the antimicrobial peptides named ERAMP-1, ERAMP-2 and ERAMP-3 were determined. The mature peptide regions of the precursors differed in single amino acid substitutions. It was shown that ERAMP-2 and ERAMP-3 have valine at position 34 affecting the degree of fungal proteinase inhibition, which has not been found in other WAMP homologs. To elucidate the role of the valine residue in the E. repens peptide antifungal activity, the recombinant peptide was expressed in E. coli and its antifungal activity was assayed against a range of phytopathogenic fungi belonging to ascomycetes. The peptide was more active than the wheat WAMP-1 peptide against three of four tested fungi infecting cereals and other plant species. The results obtained contribute to our knowledge of the biodiversity of wamp genes in Poaceae. In addition, they expand our understanding of the repertoire of defensive genes in E. repens responsible for its enhanced pathogen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Manners, J.M., Hidden weapons of microbial destruction in plant genomes, Genome Biol., 2007, vol. 8, no. 9, p. 225. doi 10.1186/gb-2007-8-9-225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Egorov, Ts.A. and Odintsova, T.I., Defense peptides of plant immunity, Russ. J. Bioorg. Chem., 2012, vol. 38, no. 1, pp. 1-9.

    Article  CAS  Google Scholar 

  3. Pushpanathan, M., Gunasekaran, P., and Rajendhran, J., Antimicrobial peptides: versatile biological properties, Int. J. Peptides, 2013, vol. 2013, article ID 675391. doi 10.1155/2013/675391

    Article  CAS  Google Scholar 

  4. Tam, J.P., Wang, S., Wong, K.H., and Tan, W.L., Antimicrobial peptides from plants, Pharmaceuticals (Basel), 2015, vol. 8, no. 4, pp. 711-757. doi 10.3390/ph8040711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nawrot, R., Barylski, J., Nowicki, G., et al., Plant antimicrobial peptides, Folia Microbiol. (Praha), 2014, vol. 59, no. 3, pp. 181-196. doi 10.1007/s12223-013-0280-4

    Article  CAS  Google Scholar 

  6. Silverstein, K.A., Moskal, W.A., Jr., Wu, H.C., et al., Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant J., 2007, vol. 51, no. 2, pp. 262-280. doi 10.1111/j.1365-313X.2007.03136.x

    Article  PubMed  CAS  Google Scholar 

  7. de Souza Cândido, E., e Silva Cardoso, M.H., Sousa, D.A., et al., The use of versatile plant antimicrobial peptides in agribusiness and human health, Peptides, 2014, vol. 55, pp. 65-78. doi 10.1016/j.peptides.2014.02.003

    Article  PubMed  CAS  Google Scholar 

  8. Meneguetti, B.T., Machado, L.S., Oshiro, K.G.N., et al., Antimicrobial peptides from fruits and their potential use as biotechnological tools—a review and outlook, Front. Microbiol., 2017, vol. 7:2136. doi 10.3389/fmicb.2016.02136

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yan, J., Yuan, S.S., Jiang, L.I., et al., Plant antifungal proteins and their applications in agriculture, Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 12, pp. 4961-4981. doi 10.1007/s00253-015-6654-6

    Article  PubMed  CAS  Google Scholar 

  10. Holaskova, E., Galuszka, P., Frebort, I., and Oz, M.T., Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology, Biotechnol. Adv., 2015, vol. 33 (6, part 2), pp. 1005-1023. doi 10.1016/j.biotechadv.2015.03.007

    Article  PubMed  CAS  Google Scholar 

  11. Beintema, J.J., Structural features of plant chitinases and chitin-binding proteins, FEBS Lett., 1994, vol. 350, nos. 2–3, pp. 159-163.

    Article  PubMed  CAS  Google Scholar 

  12. Slavokhotova, A.A., Shelenkov, A.A., Andreev, Ya.A., and Odintsova, T.I., Hevein-like plant antimicrobial peptides, Usp. Biol. Khim., 2017, vol. 57, pp. 209-244.

    Google Scholar 

  13. Odintsova, T.I., Vassilevski, A.A., Slavokhotova, A.A., et al., A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif, FEBS J., 2009, vol. 276, no. 15, pp. 4266-4275. doi 10.1111/j.1742-4658.2009.07135.x

    Article  PubMed  CAS  Google Scholar 

  14. Slavokhotova, A.A., Naumann, T.A., Price, N.P., et al., Novel mode of action in plant defence peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases, FEBS J., 2014, vol. 281, no. 20, pp. 4754-4764. doi 10.1111/febs.13015

    Article  PubMed  CAS  Google Scholar 

  15. Andreev, Y.A., Korostyleva, T.V., Slavokhotova, A.A., et al., Genes encoding hevein-like defense peptides in wheat: distribution, evolution, and role in stress response, Biochimie, 2012, vol. 94, no. 4, pp. 1009-1016. doi 10.1016/j.biochi.2011.12.023

    Article  PubMed  CAS  Google Scholar 

  16. Istomina, E.A., Slavokhotova, A.A., Korostyleva, T.V., et al., Genes encoding hevein-like antimicrobial peptides WAMPs in the species of the genus Aegilops L., Russ. J. Genet., 2017, vol. 53, no. 12, pp. 1320-1327. doi 10.1134/S1022795417120043

  17. Hagin, R.D. and Bobnick, S.J., Isolation and identification of a slug-specific molluscicide from quackgrass (Agropyron repens L. Beauv.), J. Agric. Food Chem., 1991, vol. 39, no. 1, pp. 192-196. doi 10.1021/ jf00001a039

    Article  CAS  Google Scholar 

  18. Hagin, R.D., Isolation and identification of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophan, major allelopathic aglycons in quackgrass (Agropyron repens L. Beauv.), J. Agric. Food Chem., 1989, vol. 37, no. 4, pp. 1143-1149. doi 10.1021/jf00088a072

    Article  CAS  Google Scholar 

  19. Powell, R.G. and Petroski, R.J., The loline group of pyrrolizidine alkaloids, in The Alkaloids: Chemical and Biological Perspectives, Pelletier, S.W., Ed., New York: Springer-Verlag, 1992, vol. 8, pp. 320-338.

    Google Scholar 

  20. Fedak, G., Alien species as sources of physiological traits for wheat improvement, Euphylica, 1985, vol. 34, pp. 673-680. doi 10.1007/BF00035403

    Article  Google Scholar 

  21. Mathre, D.E., Johnston, H., and Martin, J., Sources of resistance to Cephalosporium gramineum in Triticum and Agropyron species, Euphytica, 1985, vol. 34, pp. 419-424. doi 10.1007/BF00022937

    Article  Google Scholar 

  22. Sharma, H.C., Gill, B.S., and Uyemoto, J.K., High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viroses, Phytopathof. Z., 1984, vol. 110, pp. 143-147. doi 10.1111/j.1439-0434.1984.tb03402.x

    Article  Google Scholar 

  23. Sharma, H.C., Ohm, H.W., Lister, M., et al., Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus, Theor. Appl. Genet., 1989, vol. 77, pp. 369-374.

    Article  PubMed  CAS  Google Scholar 

  24. Tzitzin, N.V., Problemy ozimykh i mnogoletnikh pshenits: pyreino-pshenichnye gibridy (Problems of Winter and Perennial Wheat: Couch Grass—Wheat Hybrids), Omsk: Sib. Nauchno-Issled. Inst. Zernovykh Khoz., 1933.

    Google Scholar 

  25. Tzitzin, N.V., Wheat and couch grass hybrids, Sci. Cult. (Calcutta), 1940, vol. 6, no. 1, pp. 18-20. doi 10.1086/282073

    Google Scholar 

  26. Cauderon, Y., Etude cytogenetique des Agropyrons francais el de leurs hybrides avec les Bles, Ann. Amilior. Plant., 1958, vol. 8, pp. 389-567.

    Google Scholar 

  27. Cauderon, Y., Use of Agropyron species for wheat improvement, Proceedings of the Conference on Broadening the Genetic Base of Crops, Wageningen, Netherlands: Pudoc, 1979, pp. 175-186.

  28. Sharma, H.C. and Gill, B.S., New hybrids between Agropyron and wheat: 2. Production, morphology, and cytogenetic analysis of F1 hybrids and backcross derivatives, Theor. Appl. Genet., 1983, vol. 66, no. 2, pp. 111-121. doi 10.1007/BF00265184

    Article  PubMed  CAS  Google Scholar 

  29. Mujeeb-Kazi, A., Roldan, S., Suh, D.Y., et al., Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous Agropyron species, Theor. Appl. Genet., 1989, vol. 77, no. 2, pp. 162-168. doi 10.1007/BF00266181

    Article  PubMed  CAS  Google Scholar 

  30. Chen, Q., Jahier, J., and Cauderon, Y., Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, and A. desertorum, Genome, 1990, vol. 33, no. 5, pp. 663-667. doi doi 10.1139/g90-098

    Article  Google Scholar 

  31. Al-Snafi, A.E., Chemical constituents and pharmacological importance of Agropyron repens—a review, Res. J. Pharmacol. Toxicol., 2015, vol. 1, no. 2, pp. 37-41.

    Google Scholar 

  32. Antal, D.S., Medicinal plants with antioxidant properties from Banat region (Romania): a rich pool for the discovery of multi-target phytochemicals active in free-radical related disorders, An. Univ. “din Oradea,” Fasc. Biol., 2010, vol. 17/1, pp. 14-22.

    Google Scholar 

  33. Committee on Herbal Medicinal Products, Assessment report on Agropyron repens (L.) P. Beauv. rhizome, Eur. Med. Agency EMA/HMPC/563395/2010. http:// www.ema.europa.eu/ema/.

  34. Utkina, L.L., Zhabon, E.O., Slavokhotova, A.A., et al., Heterologous expression of a synthetic gene encoding a novel hevein-type antimicrobial peptide of Leymus arenarius in Escherichia coli cells, Russ. J. Genet., 2010, vol. 46, no. 12, pp. 1449-1454. https://doi.org/10.1134/ S1022795410120070.

    Article  CAS  Google Scholar 

  35. Semina, Yu.V., Shcherbakova, L.A., Slezina, M.P., and Odintsova, T.I., Studying the activity of Chenopodium album seed extracts and Fusarium sambucinum culture liquid against several plant pathogenic fungi, S.-kh. Biol., 2016, vol. 51, no. 5, pp. 739-745. doi 10.15389/agrobiology.2016.5///rus

    Google Scholar 

  36. Assadi, M. and Runemark, H., Hybridization, genomic constitution and generic delimitation in Elymus s. l. (Poaceae: Triticeae), Pl. Syst. Evol., 1995, vol. 194, pp. 189-205.

    Article  Google Scholar 

  37. Dubovskii, P.V., Vassilevskii, A.A., Slavokhotova, A.A., et al., Solution structure of a defense peptide from wheat with a 10-cysteine motif, Biochem. Biophys. Res. Commun., 2011, vol. 411, pp. 14-18.

    Article  PubMed  CAS  Google Scholar 

  38. Dewey, D.R., Cytogenetics of Agropyron drobovii and five of its interspecific hybrids, Bot. Gaz., 1980, vol. 141, pp. 469-478. doi 10.1086/337185

    Article  Google Scholar 

  39. Wang, R.R.C., Genome relationships in the perennial Triticeae based on diploid hybrids and beyond, Hereditas, 1992, vol. 116, pp. 133-136. doi 10.1111/j.1601-5223.1992.tb00812.x

    Article  Google Scholar 

  40. Mason-Gamer, R.J., Orme, N.L., and Anderson, C.M., Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets, Genome, 2002, vol. 45, pp. 991-1002.

    Article  PubMed  CAS  Google Scholar 

  41. Sun, G.L., Ni, Y., and Daley, T., Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species, Mol. Phylogenet. Evol., 2008, vol. 46, no. 3, pp. 897-907. doi 10.1016/j.ympev.2007.12.024

    Article  PubMed  CAS  Google Scholar 

  42. Sun, D. and Sun, G., Untangling nucleotide diversity and evolution of the H genome in polyploidy Hordeum and Elymus species based on the single copy of nuclear gene DMC1, PLoS One, 2012, vol. 7, no. 12. e50369. doi 10.1371/journal.pone.0050369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, X.L., Fan, X., Zeng, J., et al., Phylogeny and molecular evolution of the DMC1 gene within the StH genome species in Triticeae (Poaceae), Genes Genom., 2012, vol. 34, pp. 237-244. doi 10.1007/s13258-011-0169-z

    Article  Google Scholar 

  44. Mason-Gamer, R.J., Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass, Syst. Biol., 2004, vol. 53, no. 1, pp. 25-37. doi 10.1080/10635150490424402

    Article  PubMed  Google Scholar 

  45. Mason-Gamer, R.J., Phylogeny of a genomically diverse group of Elymus (Poaceae) allopolyploids reveals multiple levels of reticulation, PLoS One, 2013, vol. 8, no. 11. e78449. doi 10.1371/journal.pone.0078449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dewey, D.R., Synthetic hybrids of New World and Old World Agropyrons: 3. Agropyron repens × tetraploid Agropyron spicatum, Am. J. Bot., 1967, vol. 54, pp. 93-98. doi 10.1002/j.1537-2197.1967.tb06895.x

    Article  Google Scholar 

  47. Mahelka, V., Suda, Y., Jarolímová, V., et al., Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid, Folia Geobot., 2005, vol. 40, no. 4, pp. 367-384. doi 10.1007/BF02804286

    Article  Google Scholar 

  48. Mahelka, V. and Kopecký, D., Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics, Mol. Biol. Evol., 2010, vol. 27, no. 6, pp. 1370-1390. doi 10.1093/molbev/msq021

    Article  PubMed  CAS  Google Scholar 

  49. Mason-Gamer, R.J., Allohexaplody, introgression, and the complex phylogenetic history of Elymus repens (Poaceae), Mol. Phylogenet. Evol., 2008, vol. 47, no. 2, pp. 598-611. doi 10.1016/j.ympev.2008.02.008

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 15-29-02480) in the part of analysis of biodiversity of hevein-type peptides in E. repens and by the Russian Science Foundation (project no. 16-16-00032) in the part of antimicrobial assays of recombinant peptides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Odintsova.

Additional information

Translated by A. Boutanaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slezina, M.P., Korostyleva, T.V., Slavokhotova, A.A. et al. Genes Encoding Hevein-Like Antimicrobial Peptides from Elytrigia repens (L.) Desv. ex Nevski. Russ J Genet 54, 1152–1159 (2018). https://doi.org/10.1134/S1022795418100149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418100149

Keywords:

Navigation