Skip to main content

Advertisement

Log in

Hormonal Sex Inversion and Some Aspects of Its Genetic Determination in Chicken

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Different mechanisms of genetic sex determination in birds are considered. Special emphasis is placed on the influence of external factors (reduction of estrogen synthesis, inactivation of DNA methylases) on expression of key sex determining genes. The possibility of sex inversion in domestic chicken by aromatase inhibition, genomic DNA demethylation, and the effect of estrogen analogs on estrogen receptors was demonstrated. The results of these effects were analyzed and their effect on the development of gonads in one-day embryos was demonstrated. A suggestion on earlier aromatase activity in chicken embryos, weak effect of DNA demethylation with 5-azacytidine, and different mechanisms of the effect of estrogens and their analogs (tamoxifen) on the gonad development in chicken was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devlin, R.H. and Nagahama, Y., Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences, Aquaculture, 2002, vol. 208, pp. 191–364. https//doi.org/10.1016/S0044-8486(02)00057-1.

    Article  CAS  Google Scholar 

  2. Kobayashi, Y., Nagahama, Y., and Nakamura, M., Diversity and plasticity of sex determination and differentiation in fishes, Sex. Dev., 2013, vol. 7, nos. 1–3, pp. 115–125. doi 10.1159/000342009

    Article  PubMed  CAS  Google Scholar 

  3. Hayes, T.B., Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms, J. Exp. Zool., 1998, vol. 281, pp. 373–399. doi 10.1002/(SICI)1097-010X(19980801)281:53.3.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  4. Nakamura, M.I., Is a sex-determining gene(s) necessary for sex-determination in amphibians? Steroid hormones may be key factor, Sex. Dev., 2013, vol. 7, nos. 1–3, pp. 104–114. doi 10.1159/000339661

    Article  PubMed  CAS  Google Scholar 

  5. Ciofi, C. and Swingland, I.R., Environmental sex determination in reptiles, Appl. Anim. Behav. Sci., 1997, vol. 51, pp. 251–265. doi doi 10.1016/S0168-1591(96)01108-2

    Article  Google Scholar 

  6. Janzen, F.J. and Paukstis, G.L., Environmental sex determination in reptiles: ecology, evolution, and experimental design, Q. Rev. Biol., 1991, vol. 66, no. 2, pp. 149–179. http://www.jstor.org/stable/2830229.

    Article  PubMed  CAS  Google Scholar 

  7. Merchant-Larios, H. and Díaz-Hernández, V., Environmental sex determination mechanisms in reptiles, Sex. Dev., 2013, vol. 7, nos. 1–3, pp. 95–103. doi 10.1159/000341936

    Article  PubMed  CAS  Google Scholar 

  8. Schroeder, A.L., Metzger, K.J., Miller, A., et al., A novel candidate gene for temperature-dependent sex determination in the common snapping turtle, Genetics, 2016, vol. 203, no. 1, pp. 557–571. doi 10.1534/genetics.115.182840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wilhelm, D., Palmer, S., and Koopman, P., Sex determination and gonadal development in mammals, Physiol. Rev., 2007, vol. 87, no. 1, pp. 1–28. doi 10.1152/physrev.00009.2006

    Article  PubMed  CAS  Google Scholar 

  10. She, Z.Y. and Yang, W.X., Molecular mechanisms involved in mammalian primary sex determination, J. Mol. Endocrinol., 2014, vol. 53, no. 1, pp. R21–R37. doi 10.1530/JME-14-0018

    Article  PubMed  CAS  Google Scholar 

  11. Windley, S.P. and Wilhelm, D., Signaling pathways involved in mammalian sex determination and gonad development, Sex. Dev., 2015, vol. 9, no. 6, pp. 297–315. doi 10.1159/000444065

    Article  PubMed  CAS  Google Scholar 

  12. Schmid, M., Smith, J., Burt, D.W., et al., Third report on chicken genes and chromosomes 2015, Cytogenet. Genome Res., 2015, vol. 145, no. 2, pp. 78–179. doi 10.1159/000430927

    Article  PubMed  Google Scholar 

  13. Bull, J.J., Sex determination: are two mechanisms better than one?, J. Biosci., 2008, vol. 32, no. 1, pp. 5–8. http://www.ias.ac.in/jbiosci/.

    Article  Google Scholar 

  14. Johnson Pokorná, M. and Kratochvíl, L., What was the ancestral sex-determining mechanism in amniote vertebrates?, Biol. Rev. Camb. Philos. Soc., 2016, vol. 91, no. 1, pp. 1–12. doi 10.1111/brv.12156

    Article  PubMed  Google Scholar 

  15. Mawaribuchi, S., Yoshimoto, S., Ohashi, S., et al., Molecular evolution of vertebrate sex-determining genes, Chromosome Res., 2012, vol. 20, no. 1, pp. 139–151. doi 10.1007/s10577-011-9265-9

    Article  PubMed  CAS  Google Scholar 

  16. Graves, J.A., How to evolve new vertebrate sex determining genes, Dev. Dyn., 2013, vol. 242, no. 4, pp. 354–359. doi 10.1002/dvdy.23887

    Article  PubMed  CAS  Google Scholar 

  17. Ito, M. and Mawaribuchi, S., Molecular evolution of genes involved in vertebrate sex determination, 2013. doi 10.1002/9780470015902.a0024948

    Book  Google Scholar 

  18. Navarro-Martín, L., Viñas, J., Ribas, L., et al., DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass, PLoS Genet., 2011, vol. 7, no. 12. e1002447. doi 10.1371/journal.pgen.1002447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Piferrer, F., Epigenetics of sex determination and gonadogenesis, Dev. Dyn., 2013, vol. 242, no. 4, pp. 360–370. doi 10.1002/dvdy.23924

    Article  PubMed  CAS  Google Scholar 

  20. Shao, C., Li, Q., Chen, S., et al., Epigenetic modification and inheritance in sexual reversal of fish, Genome Res., 2014, vol. 24, no. 4, pp. 604–615. doi 10.1101/gr.162172.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Trukhina, A.V., Lukina, N.A., Nekrasova, A.A., et al., Sex inversion and epigenetic regulation in vertebrates, Russ. J. Genet., 2015, vol. 51, no. 3, pp. 231–237. https://doi.org/10.1134/S1022795415020155.

    Article  CAS  Google Scholar 

  22. Slanchev, K., Stebler, J., de la Cueva-Me’ndez, G., et al., Development without germ cells: the role of the germ line in zebrafish sex differentiation, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 11, pp. 4074–4079. doi 10.1073/pnas.0407475102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tanaka, M., Germline stem cells are critical for sexual fate decision of germ cells, Bioessays, 2016, vol. 38, no. 12, pp. 1227–1233. doi 10.1002/bies.201600045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tang, W.W., Kobayashi, T., Irie, N., et al., Specification and epigenetic programming of the human germ line, Nat. Rev. Genet., 2016, vol. 17, no. 10, pp. 585–600. doi 10.1038/nrg.2016.88

    Article  PubMed  CAS  Google Scholar 

  25. McCarrey, J.R. and Abbott, U.K., Functional differentiation of chick gonads following depletion of primordial germ cells, J. Embryol. Exp. Morphol., 1982, vol. 68, pp. 161–174. http://dev.biologists.org/content/develop/68/1/161.full.pdf.

    PubMed  CAS  Google Scholar 

  26. McLaren, A., Development of the mammalian gonad: the fate of the supporting cell lineage, Bioessays, 1991, vol. 13, no. 4, pp. 151–156. doi 10.1002/bies.950130402

    Article  PubMed  CAS  Google Scholar 

  27. Maatouk, D.M., Mork, L., Hinson, A., et al., Germ cells are not required to establish the female pathway in mouse fetal gonads, PLoS One, 2012, vol. 7, no. 10. e47238. doi 10.1371/journal.pone.0047238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rios-Rojas, C., Bowles, J., and Koopman, P., On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?, Reproduction, 2015, vol. 149, no. 4. pp. 181–191. doi 10.1530/REP-14-0663

    Article  CAS  Google Scholar 

  29. Tagirov, M.T., Sex determination and control mechanisms in birds, Biotechnol. Acta, 2013, vol. 6, no. 1, pp. 62–72. doi 10.15407/biotech6.01.062

    Article  Google Scholar 

  30. Kuroiwa, A., Sex-determining mechanism in avians, Adv. Exp. Med. Biol., 2017, vol. 1001, pp. 19–31. doi 10.1007/978-981-10-3975-1_2

    Article  PubMed  Google Scholar 

  31. Elbrecht, A. and Smith, R.G., Aromatase enzyme activity and sex determination in chickens, Science, 1992, vol. 255, no. 5043, pp. 467–470. doi 10.1126/science. 1734525

    Article  PubMed  CAS  Google Scholar 

  32. Vaillant, S., Guémené, D., Dorizzi, M., et al., Degree of sex reversal as related to plasma steroid levels in genetic female chickens (Gallus domesticus) treated with Fadrozole, Mol. Reprod. Dev., 2003, vol. 65, no. 4, pp. 420–428. doi 10.1002/mrd.10318

    Article  PubMed  CAS  Google Scholar 

  33. Nishikimi, H., Kansaku, N., Saito, N., et al., Sex differentiation and mRNA expression of P450c17, P450arom and AMH in gonads of the chicken, Mol. Reprod. Dev., 2000, vol. 55, no. 1, pp. 20–30. doi 10.1002/(SICI)1098-2795(200001)55:1<20::AID-MRD4>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  34. Barykina, R.P., Veselova, T.D., Devyatov, A.G., et al., Spravochnik po botanicheskoi mikrotekhnike: osnovy i metody (Handbook of Botanical Microtechniques: Basics and Methods), Moscow: Mosk. Gos. Univ., 2004.

    Google Scholar 

  35. Caetano, L.C., Gennaro, F.G., Coelho, K., et al., Differential expression of the MHM region and of sexdetermining-related genes during gonadal development in chicken embryos, Genet. Mol. Res., 2014, vol. 13, no. 1, pp. 838–849. doi 10.4238/2014.February.13.2

    Article  PubMed  CAS  Google Scholar 

  36. Griffiths, R., Double, M.C., Orr, K., et al., A DNA test to sex most birds, Mol. Ecol., 1998, vol. 7, no. 8, pp. 1071–1075. doi 10.1046/j.1365-294x.1998.00389.x

    Article  PubMed  CAS  Google Scholar 

  37. Ellegren, H., Dosage compensation: do birds do it as well?, Trends Genet., 2002, vol. 18, no. 1, pp. 25–28. doi 10.1016/S0168-9525(01)02553-7

    Article  PubMed  CAS  Google Scholar 

  38. Dubiec, A. and Zagalska-Neubauer, M., Molecular techniques for sex identification in birds, Biol. Lett., 2006, vol. 43, no. 1, p. 312. http://www.biolett.amu.edu.pl.

    Google Scholar 

  39. Trukhina, A.V., Lukina, N.A., Vakkerov-Kouzova, N.D., et al., Sex inversion in domestic chicken (Gallus gallus domesticus) by letrozole and tamoxifen, Cell Tiss. Biol., 2014, vol. 8, no. 3, pp. 244–252. doi 10.1134/S1990519X14030122

    Article  Google Scholar 

  40. Levin, E.R. and Hammes, S.R., Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors, Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 12, pp. 783–797. doi 10.1038/nrm.2016.122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bruggeman, V., Van As, P., and Decuypere, E., Developmental endocrinology of the reproductive axis in the chicken embryo, Comp. Biochem. Physiol. Mol. Integr. Physiol., 2002, vol. 131, no. 4, pp. 839–846. doi 10.1016/S1095-6433(02)00022-3

    Article  Google Scholar 

  42. Burke, W.H. and Henry, M.H., Gonadal development and growth of chickens and turkeys hatched from eggs injected with an aromatase inhibitor, Poult. Sci., 1999, vol. 78, no. 7, pp. 1019–1033. doi 10.1093/ps/78.7. 1019

    Article  PubMed  CAS  Google Scholar 

  43. Wang, J. and Gong, Y., Transcription of CYP19A1 is directly regulated by SF-1 in the theca cells of ovary follicles in chicken, Gen. Comp. Endocrinol., 2017, vol. 247, pp. 1–7. doi 10.1016/j.ygcen.2017.03.013

    Article  PubMed  CAS  Google Scholar 

  44. Lambeth, L.S., Cummins, D.M., Doran, T.J., et al., Overexpression of aromatase alone is sufficient for ovarian development in genetically male chicken embryos, PLoS One, 2013, vol. 8, no. 6. e68362. doi 10.1371/journal.pone.0068362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lambeth, L.S., Morris, K.R., Wise, T.G., et al., Transgenic chickens overexpressing aromatase have high estrogen levels but maintain a predominantly male phenotype, Endocrinology, 2016, vol. 157, no. 1, pp. 83–90. doi 10.1210/en.2015-1697

    Article  PubMed  CAS  Google Scholar 

  46. Teranishi, M., Shimada, Y., Hori, T., et al., Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus, Chromosome Res., 2001, vol. 9, no. 2, pp. 147–165. doi 10.1023/A:1009235120741

    Article  PubMed  CAS  Google Scholar 

  47. Yang, X., Zheng, J., Qu, L., et al., Methylation status of cMHM and expression of sex-specific genes in adult sex-reversed female chickens, Sex Dev., 2011, vol. 5, no. 3, pp. 147–154. doi 10.1159/000327712

    Article  PubMed  CAS  Google Scholar 

  48. Itoh, Y., Kampf, K., and Arnold, A.P., Possible differences in the two Z chromosomes in male chickens and evolution of MHM sequences in Galliformes, Chromosoma, 2011, vol. 120, no. 6, pp. 587–598. doi 10.1007/s00412-011-0333-x

    Article  PubMed  CAS  Google Scholar 

  49. Yang, X., Deng, J., Zheng, J., et al., A window of MHM demethylation correlates with key events in gonadal differentiation in the chicken, Sex. Dev., 2016, vol. 10, no. 3, pp. 152–158. doi 10.1159/000447659

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Trukhina.

Additional information

Original Russian Text © A.V. Trukhina, N.A. Lukina, A.F. Smirnov, 2018, published in Genetika, 2018, Vol. 54, No. 9, pp. 1047–1056.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhina, A.V., Lukina, N.A. & Smirnov, A.F. Hormonal Sex Inversion and Some Aspects of Its Genetic Determination in Chicken. Russ J Genet 54, 1069–1077 (2018). https://doi.org/10.1134/S1022795418090144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418090144

Keywords

Navigation