Skip to main content

Sex-Determining Mechanism in Avians

  • Chapter
  • First Online:
Avian Reproduction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1001))

Abstract

The sex of birds is determined by inheritance of sex chromosomes at fertilization. The embryo with two Z chromosomes (ZZ) develops into a male; by contrast, the embryo with Z and W chromosomes (ZW) becomes female. Two theories are hypothesized for the mechanisms of avian sex determination that explain how genes carried on sex chromosomes control gonadal differentiation and development during embryogenesis. One proposes that the dosage of genes on the Z chromosome determines the sexual differentiation of undifferentiated gonads, and the other proposes that W-linked genes dominantly determine ovary differentiation or inhibit testis differentiation. Z-linked DMRT1, which is a strong candidate avian sex-determining gene, supports the former hypothesis. Although no candidate W-linked gene has been identified, extensive evidence for spontaneous sex reversal in birds and aneuploid chimeric chickens with an abnormal sex chromosome constitution strongly supports the latter hypothesis. After the sex of gonad is determined by a gene(s) located on the sex chromosomes, gonadal differentiation is subsequently progressed by several genes. Developed gonads secrete sex hormones to masculinize or feminize the whole body of the embryo. In this section, the sex-determining mechanism as well as the genes and sex hormones mainly involved in gonadal differentiation and development of chicken are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agate RJ, Grisham W, Wade J, Mann S, Wingfield J, Schanen C, Palotie A, Arnold AP. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc Natl Acad Sci U S A. 2003;100:4873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An LL, Li G, KF W, Ma XT, Zheng GG, Qiu LG, Song YH. High expression of EDAG and its significance in AML. Leukemia. 2005;19:1499–502.

    Article  CAS  PubMed  Google Scholar 

  • Ayers KL, Sinclair AH, Smith CA. The molecular genetics of ovarian differentiation in the avian model. Sex Dev. 2013;7:80–94.

    Article  CAS  PubMed  Google Scholar 

  • Biason-Lauber A, Konrad D. WNT4 and sex development. Sex Dev. 2008;2:210–8.

    Article  CAS  PubMed  Google Scholar 

  • Carlon N, Stahl A. Origin of the somatic components in chick embryonic gonads. Arch Anat Microsc Morphol Exp. 1985;74:52–9.

    CAS  PubMed  Google Scholar 

  • Chue J, Smith CA. Sex determination and sexual differentiation in the avian model. FEBS J. 2011;278:1027–34.

    Article  CAS  PubMed  Google Scholar 

  • Clinton M, Zhao D, McBride D. Evidence for avian cell autonomous sex identity (CASI) and implications for the sex-determination process? Chromosome Res. 2012;20:177–90.

    Article  CAS  PubMed  Google Scholar 

  • Cock AG. Half-and-half mosaics in the fowl. J Genet. 1955;53:49–80.

    Article  Google Scholar 

  • Cutting A, Chue J, Smith CA. Just how conserved is vertebrate sex determination? Dev Dyn. 2013;242:380–7.

    Article  CAS  PubMed  Google Scholar 

  • Elbrecht A, Smith RG. Aromatase enzyme activity and sex determination in chickens. Science. 1992;255:467–70.

    Article  CAS  PubMed  Google Scholar 

  • Govoroun MS, Pannetier M, Pailhoux E, Cocquet J, Brillard JP, Couty I, Batellier F, Cotinot C. Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Dev Dyn. 2004;231:859–70.

    Article  CAS  PubMed  Google Scholar 

  • Graves JAM. Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome aneuploids. Cytogenet Genome Res. 2003;101:278–82.

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.

    Article  CAS  PubMed  Google Scholar 

  • Hollander WF. Mosaic effects in domestic birds. Q Rev Biol. 1944;19:285–307.

    Article  Google Scholar 

  • Hollander WF. Sectorial mosaics in the domestic pigeon: 25 more years. J Hered. 1975;66:197–202.

    Article  Google Scholar 

  • Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S. Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol Biol Cell. 2000;11:3645–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson QJ, Smith CA, Sinclair AH. Aromatase inhibition method reduces expression of FOXL2 in the embryonic chicken ovary. Dev Dyn. 2005;233:1052–5.

    Article  CAS  PubMed  Google Scholar 

  • Hutson J, Ikawa H, Donahoe PK. The ontogeny of Müllerian inhibiting substance in the gonads of the chicken. J Pediatr Surg. 1981;16:822–7.

    Article  CAS  PubMed  Google Scholar 

  • Hutson JM, Ikawa H, Donahoe PK. Estrogen inhibition of Müllerian inhibiting substance in the chick embryo. J Pediatr Surg. 1982;17:953–9.

    Article  CAS  PubMed  Google Scholar 

  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432(7018):695–716.

    Article  Google Scholar 

  • Itoh Y, Replogle K, Kim YH, Wade J, Clayton DF, Arnold AP. Sex bias and dosage compensation in the zebra finch versus chicken genomes: general and specialized patterns among birds. Genome Res. 2010;20:512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, Imbeaud S, Pepinsky RB, Guerrier D, Boussin L, et al. Anti-Müllerian hormone: the Jost factor. Recent Prog Horm Res. 1993;48:1–59.

    CAS  PubMed  Google Scholar 

  • Josso N, di Clemente N, Gouédard L. Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol. 2001;179:25–32.

    Article  CAS  PubMed  Google Scholar 

  • Josso N, Picard JY. Anti-Müllerian hormone. Physiol Rev. 1986;66:1038–90.

    CAS  PubMed  Google Scholar 

  • Kuroda Y, Arai N, Arita M, Teranishi M, Hori T, Harata M, Mizuno S. Absence of Z-chromosome inactivation for five genes in male chickens. Chromosome Res. 2001;9:457–68.

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa A, Yokomine T, Sasaki H, Tsudzuki M, Tanaka K, Namikawa T, Matsuda Y. Biallelic expression of Z-linked genes in male chickens. Cytogenet Genome Res. 2002;99:310–4.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth LS, Ayers KL, Cutting AD, Doran TJ, Sinclair AH, Smith CA. Anti-Müllerian hormone is required for chicken embryonic urogenital system growth but not sexual differentiation. Biol Reprod. 2015; doi:10.1095/biolreprod.115.131664. [Epub ahead of print].

  • Lambeth LS, Morris K, Ayers KL, Wise TG, O’Neil T, Wilson S, Cao Y, Sinclair AH, Cutting AD, Doran TJ, Smith CA. Overexpression of anti-Müllerian hormone disrupts gonadal sex differentiation, blocks sex hormone synthesis, and supports cell autonomous sex development in the chicken. Endocrinology. 2016;157:1258–75.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth LS, Raymond CS, Roeszler KN, Kuroiwa A, Nakata T, Zarkower D, Smith CA. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol. 2014;389:160–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambeth LS, Smith CA. Disorder of sexual development in poultry. Sex Dev. 2012;6:96–103.

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Thorne MH, Martin IC, Sheldon BL, Jones RC. Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reprod Fertil Dev. 1995;7:1185–97.

    Article  CAS  PubMed  Google Scholar 

  • Liu CF, Liu C, Yao HH. Building pathways for ovary organogenesis in the mouse embryo. Curr Top Dev Biol. 2010;90:263–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loffler KA, Zarkower D, Koopman P. Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology. 2003;144:3237–43.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 2002;417:559–63.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda M, Sato T, Toyazaki Y, Nagahama Y, Hamaguchi S, Sakaizumi M. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zool Sci. 2003;20:159–61.

    Article  CAS  PubMed  Google Scholar 

  • McQueen HA, McBride D, Miele G, Bird AP, Clinton M. Dosage compensation in birds. Curr Biol. 2001;11:253–7.

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Ishiguro M, Aduma N, Izumi H, Kuroiwa A. Chicken hemogen homolog is involved in the chicken-specific sex-determining mechanism. Proc Natl Acad Sci U S A. 2013;110:3417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci U S A. 2002;99:11778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill M, Binder M, Smith C, Andrews J, Reed K, Smith M, Millar C, Lambert D, Sinclair A. ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Dev Genes Evol. 2000;210:243–9.

    Article  PubMed  Google Scholar 

  • Pace HC, Brenner C. Feminizing chicks: a model for avian sex determination based on titration of Hint enzyme activity and the predicted structure of an Asw–Hint heterodimer. Genome Biol. 2003;4:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisarska MD, Barlow G, Kuo FT. Mini review: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology. 2011;152:1199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarkower D. Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol. 1999;215:208–20.

    Article  CAS  PubMed  Google Scholar 

  • Reed KJ, Sinclair AH. FET-1: a novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Mech Dev. 2002;119:S87–90.

    Article  PubMed  Google Scholar 

  • Scheib D. Effects and role of estrogens in avian gonadal differentiation. Differentiation. 1983;23(Suppl):S87–92.

    PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;453:930–4.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, McClive PJ, Hudson Q, Sinclair AH. Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Dev Biol. 2005;284:337–50.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH. Conservation of a sex-determining gene. Nature. 1999;402:601–2.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Roeszler KN, Sinclair AH. Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. Int J Dev Biol. 2009a;53:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature. 2009b;461:267–71.

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Shoemaker CM, Roeszler KN, Queen J, Crews D, Sinclair AH. Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development. BMC Dev Biol. 2008;8:72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taber E. Intersexuality in birds. In: Armstrong CN, Marshall AJ, editors. Intersexuality of vertebrates including man. New York: Academic Press; 1964. p. 285–310.

    Google Scholar 

  • Thorne MH, Sheldon BL. Cytological evidence of maternal meiotic errors in a line of chickens with a high incidence of triploidy. Cytogenet Cell Genet. 1991;57:206–10.

    Article  CAS  PubMed  Google Scholar 

  • Thorne MH, Sheldon BL. Triploid intersex and chimeric chickens: useful models for studies of avian sex determination. In: Reed KC, Graves JAM, editors. Sex chromosomes and sex-determining genes. Chur: Harwood Academic Publishers; 1993. p. 199–205.

    Google Scholar 

  • Tran D, Josso N. Relationship between avian and mammalian anti-Müllerian hormones. Biol Reprod. 1977;16:267–73.

    Article  CAS  PubMed  Google Scholar 

  • Ukeshima A. Germ cell death in the degenerating right ovary of the chick embryo. Zool Sci. 1996;13:559–63.

    Article  CAS  PubMed  Google Scholar 

  • Yang LV, Nicholson RH, Kaplan J, Galy A, Li L. Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech Dev. 2001;104:105–11.

    Article  CAS  PubMed  Google Scholar 

  • Vigier B, Tran D, du Mesnil du Buisson F, Heyman Y, Josso N. Use of monoclonal antibody techniques to study the ontogeny of bovine anti-Müllerian hormone. J Reprod Fertil. 1983;69:207–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol. 2007;21:712–25.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci U S A. 2008;105:2469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ, Hocking PM, Lewis PD, Sang HM, Clinton M. Somatic sex identity is cell autonomous in the chicken. Nature. 2010;464:237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Svingen T, Ng ET, Koopman P. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development. 2015;142:1083–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asato Kuroiwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kuroiwa, A. (2017). Sex-Determining Mechanism in Avians. In: Sasanami, T. (eds) Avian Reproduction. Advances in Experimental Medicine and Biology, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-10-3975-1_2

Download citation

Publish with us

Policies and ethics