Skip to main content
Log in

Associations of Polymorphic DNA Markers and Their Combinations with Multiple Sclerosis

  • Medical Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is regarded as multifactorial, polygenic disease; its development is the result of autoimmune and neurodegenerative processes which lead to multifocal lesions of the central nervous system. The aim of the study was to analyze associations between MS and polymorphic markers rs3129934 (C6orf10), rs1109670 (DDEF2/MBOAT2 gene), rs9523762 (GPC5 gene), rs28362491 (NFKB1 gene), rs10974944 (JAK2 gene), and rs2304256 (TYK2 gene). The material for the study was DNA samples of unrelated MS patients (N = 224) aged 17 to 67 years and individuals of a control group (N = 312) aged 18 to 66 years. Both samples were formed from the ethnic group of Russians. The results of the investigation demonstrated that, for women, MS was associated with genotypes rs3129934*C/T (p = 0.001, OR = 2.23), rs3129934*T/T (p = 0.028, OR = 4.04), and rs2304256*C/C (p = 0.049, OR = 1.6); for men, with genotype rs1109670*C/A (p = 0.017, OR = 2.06). In addition, using the APSampler algorithm, we identified combinations of alleles associated with increased risk of MS separately for women and men, in which the most frequent alleles of polymorphic markers were rs3129934*T, rs1109670*C, rs10974944*G, and rs2304256*C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pazhigova, Z.B., Karpov, S.M., Shevchenko, P.P., and Burnusus, N.I., The prevalence of multiple sclerosis in the world (review), Mezhdunar. Zh. Eksp. Obraz., 2014, nos. 1–2, pp. 78–82.

    Google Scholar 

  2. Ivanova, E.V, Bakhtiyarova, K.Z., Zaplakhova, O.V., and Sharafutdinova, L.R., Clinical and epidemiological study of multiple sclerosis in Ufa, Prakt. Med., 2017, vol. 102, no. 1 (102), pp. 88–91.

    Google Scholar 

  3. Barcellos, L., Oksenberg, J., Green, A., et al., Genetic basis for clinical expression in multiple sclerosis, Brain, 2002, vol. 125, no. 1, pp. 150–158. doi 10.1093/brain/awf009

    Article  PubMed  CAS  Google Scholar 

  4. Ebers, G.C., A twin consensus in MS, Multiple Sclerosis J., 2005, vol. 11, pp. 497–499.

    Article  CAS  Google Scholar 

  5. Favorova, O.O., Kulakova, O.G., and Boiko, A.N., Multiple sclerosis as a polygenic disease: an update, Russ. J. Genet., 2010, vol. 46, no. 3, pp. 265–275. https://doi.org/10.1134/S1022795410030026.

    Article  CAS  Google Scholar 

  6. Comabella, M., Craig, D.W., Camiña-Tato, M., et al., Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500,000 single nucleotide polymorphisms, PloS One, 2008, vol. 3, no. 10. e3490. doi 10.1371/journal.pone. 0003490

    Google Scholar 

  7. Martinelli-Boneschi, F., Esposito, F., Brambilla, P., et al., A genome-wide association study in progressive multiple sclerosis, Multiple Sclerosis J., 2012, vol. 18, no. 10, pp. 1384–1394. doi 10.1177/1352458512439118

    Article  CAS  Google Scholar 

  8. Baranzini, S.E., Wang, J., Gibson, R.A., et al., Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis, Hum. Mol. Genet., 2008, vol. 18, no. 4, pp. 767–778. doi 10.1093/hmg/ddn388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schmied, M.C., Zehetmayer, S., Reindl, M., et al., Replication study of multiple sclerosis (MS) susceptibility alleles and correlation of DNA-variants with disease features in a cohort of Austrian MS patients, Neurogenetics, 2012, vol. 13, no. 2, pp. 181–187. doi 10.1007/s10048-012-0316-y

    Article  PubMed  CAS  Google Scholar 

  10. Cavanillas, M.L., Fernandez, O., Comabella, M., et al., Replication of top markers of a genome-wide association study in multiple sclerosis in Spain, Genes Immun., 2011, vol. 12, no. 2, p. 110. doi 10.1038/gene.2010.52

    Article  PubMed  CAS  Google Scholar 

  11. McDonald, W.I., Compston, A., Edan, G., et al., Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis, Ann. Neurol., 2001, vol. 50, no. 1, pp. 121–127. doi 10.1002/ana.1032

    Article  PubMed  CAS  Google Scholar 

  12. Favorov, A.V., Andreewski, T.V., Sudomoina, M.A., et al., A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans, Genetics, 2005, vol. 171, no. 4, pp. 2113–2121. doi 10.1534/genetics.105. 048090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Andreev, J., Simon, J.P., Sabatini, D.D., et al., Identification of a new Pyk2 target protein with Arf-GAP activity, Mol. Cell. Biol., 1999, vol. 19, no. 3, pp. 2338–2350. doi 10.1128/MCB.19.3.2338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kondo, A., Hashimoto, S., Yano, H., et al., A new paxillin-binding protein, PAG3/Papα/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration, Mol. Biol. Cell, 2000, vol. 11, no. 4, pp. 1315–1327. doi 10.1091/mbc.11.4. 1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hishikawa, D., Shindou, H., Kobayashi, S., et al., Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 8, pp. 2830–2835. doi 10.1073/pnas.0712245105

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Vactor, D., Wall, D.P., and Johnson, K.G., Heparan sulfate proteoglycans and the emergence of neuronal connectivity, Curr. Opin. Neurobiol., 2006, vol. 16, no. 1, pp. 40–51. doi 10.1016/j.conb.2006.01.011

    Article  PubMed  CAS  Google Scholar 

  17. Byun, E., Caillier, S.J., Montalban, X., et al., Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis, Arch. Neurol., 2008, vol. 65, no. 3, pp. 337–344. doi 10.1001/archneurol.2008.47

    Article  PubMed  Google Scholar 

  18. Johnson, B.A., Wang, J., Taylor, E.M., et al., Multiple sclerosis susceptibility alleles in African Americans, Genes Immun., 2010, vol. 11, no. 4, p. 343. doi 10.1038/gene.2009.81

    Article  PubMed  CAS  Google Scholar 

  19. Shin, J.G., Kim, H.J., Park, B.L., et al., Putative association of GPC5 polymorphism with the risk of inflammatory demyelinating diseases, J. Neurol. Sci., 2013, vol. 335, no. 1, pp. 82–88. doi 10.1016/j.jns. 2013.08.031

    Article  PubMed  CAS  Google Scholar 

  20. Yan, J. and Greer, J.M., NF-κB, a potential therapeutic target for the treatment of multiple sclerosis, CNS Neurol. Disord.-Drug Targets, 2008, vol. 7, no. 6, pp. 536–557.

    Article  PubMed  CAS  Google Scholar 

  21. Korytina, G.F., Akhmadishina, L.Z., Kochetova, O.V., et al., Inflammatory and immune response genes polymorphisms are associated with susceptibility to chronic obstructive pulmonary disease in Tatars population from Russia, Biochem. Genet., 2016, vol. 54, no. 4, pp. 388–412. doi 10.1007/s10528-016-9726-0

    Article  PubMed  CAS  Google Scholar 

  22. Gautam, A., Gupta, S., Mehndiratta, M., et al., Association of NFKB1 gene polymorphism (rs28362491) with levels of inflammatory biomarkers and susceptibility to diabetic nephropathy in Asian Indians, World J. Diabetes, 2017, vol. 8, no. 2, p. 66. doi 10.4239/wjd.v8.i2.66

    Article  PubMed  PubMed Central  Google Scholar 

  23. Soydas, T., Karaman, O., Arkan, H., et al., The correlation of increased CRP levels with NFKB1 and TLR2 polymorphisms in the case of morbid obesity, Scand. J. Immunol., 2016, vol. 84, no. 5, pp. 278–283. doi 10.1111/sji.12471

    Article  PubMed  CAS  Google Scholar 

  24. Yang, C.H., Murti, A., Valentine, W.J., et al., Interferon alpha activates NF-kappaB in JAK1-deficient cells through a TYK2-dependent pathway, J. Biol. Chem., 2005, vol. 280, no. 27, pp. 25849–25853. doi 10.1074/jbc.M413721200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bentham, J., Morris, D.L., Graham, D.S.C., et al., Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus, Nature Genet., 2015, vol. 47, no. 12, p. 1457. doi 10.1038/ng.3434

    Article  PubMed  CAS  Google Scholar 

  26. Morris, D.L., Sheng, Y., Zhang, Y., et al., Genomewide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus, Nat. Genet., 2016, vol. 48, no. 8, p. 940. doi 10.1038/ng.3603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lee, Y.H., Choi, S.J., Ji, J.D., and Song, G.G., Associations between PXK and TYK2 polymorphisms and systemic lupus erythematosus: a meta-analysis, Inflammation Res., 2012, vol. 61, no. 9, pp. 949–954. doi 10.1007/s00011-012-0486-y

    Article  CAS  Google Scholar 

  28. Kilpivaara, O., Mukherjee, S., Schram, A.M., et al., A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms, Nat. Genet., 2009, vol. 41, no. 4, pp. 455–459. doi 10.1038/ng.342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Butterbach, K., Beckmann, L., de Sanjosé, S., et al., Association of JAK-STAT pathway related genes with lymphoma risk: results of a European case–control study (EpiLymph), Br. J. Haematol., 2011, vol. 153, no. 3, pp. 318–333. doi 10.1111/j.1365-2141.2011.08632.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Nasibullin.

Additional information

Original Russian Text © O.V. Zaplakhova, T.R. Nasibullin, I.A. Tuktarova, Y.R. Timasheva, V.V. Erdman, K.Z. Bakhtiyarova, O.E. Mustafina, 2018, published in Genetika, 2018, Vol. 54, No. 8, pp. 956–963.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaplakhova, O.V., Nasibullin, T.R., Tuktarova, I.A. et al. Associations of Polymorphic DNA Markers and Their Combinations with Multiple Sclerosis. Russ J Genet 54, 967–974 (2018). https://doi.org/10.1134/S102279541808015X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541808015X

Keywords

Navigation