Skip to main content
Log in

Association between Allelic Variants of IL2, IL2RA, and IL7R Genes and Multiple Sclerosis

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Multiple sclerosis is a chronic progressive disease of nervous system caused by a combination of genetic and environmental factors leading to the development of a complex of autoimmune and neurodegenerative processes. We performed the analysis of association between multiple sclerosis and polymorphic markers of interleukin-2 (IL2), interleukin-2 receptor alpha chain (IL2A) and interleukin-7 receptor alpha chain (IL7R) in the group of Russians, Tatars, and Bashkirs from the Republic of Bashkortostan (N = 1620). In the total study group, we detected the association of IL7R rs10624573*I (OR = 0.79, PBonf = 0.018) and rs1494558*T (OR = 1.44, PBonf = 2.33 × 10–4) variants with multiple sclerosis. When analyzed separately according to the ethnic origin, the association with IL7R rs1494558*T (OR = 1.49, PBonf = 0.005) remained significant in the group of Russians, and the association of IL7R rs10624573*I remained significant in the group of Bashkirs (OR = 0.56, PBonf = 0.02). We performed the multilocus analysis of association using the APSampler algorithm, and found seven combinations of the alleles and/or genotypes of the studied polymorphic loci, significantly associated with multiple sclerosis, most frequently including IL7R rs1494558 and IL7R rs10624573 allelic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Compston, A. and Coles, A., Multiple sclerosis, Lancet, 2008, vol. 372, no. 9648, pp. 1502—1517. https://doi.org/10.1016/s0140-6736(08)61620-7

    Article  CAS  Google Scholar 

  2. Hansen, T., Skytthe, A., Stenager, E., et al., Concordance for multiple sclerosis in Danish twins: an update of a nationwide study, Mult. Scler. J., 2005, vol. 11, no. 5, pp. 504—510. https://doi.org/10.1191/1352458505ms1220oa

    Article  CAS  Google Scholar 

  3. O’Gorman, C., Lin, R., Stankovich, J., and Broadley, S.A., Modelling genetic susceptibility to multiple sclerosis with family data, Neuroepidemiology, 2013, vol. 40, no. 1, pp. 1—12. https://doi.org/10.1159/000341902

    Article  PubMed  Google Scholar 

  4. Browne, P., Chandraratna, D., Angood, C., et al., Atlas of Multiple Sclerosis 2013: a growing global problem with widespread inequity, Neurology, 2014, vol. 83, no. 11, pp. 1022—1024. https://doi.org/10.1212/Wnl.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wallin, M.T., Culpepper, W.J., Coffman, P., et al., The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service, Brain, 2012, vol. 135, no. 6, pp. 1778—1785. https://doi.org/10.1093/brain/aws099

    Article  PubMed  Google Scholar 

  6. Langer-Gould, A., Brara, S.M., Beaber, B.E., and Zhang, J.L., Incidence of multiple sclerosis in multiple racial and ethnic groups, Neurology, 2013, vol. 80, no. 19, pp. 1734—1739. https://doi.org/10.1212/WNL.0b013e3182918cc2

    Article  PubMed  Google Scholar 

  7. Albor, C., du Sautoy, T., Kali Vanan, N., et al., Ethnicity and prevalence of multiple sclerosis in east London, Mult. Scler. J., 2017, vol. 23, no. 1, pp. 36—42. https://doi.org/10.1177/1352458516638746

    Article  Google Scholar 

  8. Bakhtiiarova, K.Z. and Goncharova, Z.A., Multiple sclerosis in the Bashkortostan Republic and the Rostov region: a comparative epidemiologic study, Korsakov J. Neurol. Psychiatry, 2014, vol. 114, no. 2, part 2, pp. 5—9.

  9. Sawcer, S., Hellenthal, G., Pirinen, M., et al., Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis, Nature, 2011, vol. 476, no. 7359, pp. 214—219. https://doi.org/10.1038/nature10251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gourraud, P.A., Sdika, M., Khankhanian, P., et al., A genome-wide association study of brain lesion distribution in multiple sclerosis, Brain, 2013, vol. 136, no. 4, pp. 1012—1024. https://doi.org/10.1093/brain/aws363

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Jager, P.L., Jia, X., Wang, J., et al., Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci, Nat. Genet., 2009, vol. 41, no. 7, pp. 776—782. https://doi.org/10.1038/ng.401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baranzini, S.E., Srinivasan, R., Khankhanian, P., et al., Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis, Brain, 2010, vol. 133, no. 9, pp. 2603—2611. https://doi.org/10.1093/brain/awq192

    Article  PubMed  PubMed Central  Google Scholar 

  13. Comabella, M., Craig, D.W., Camina-Tato, M., et al., Identification of a novel risk locus for multiple sclerosis at 13q31.3 by a pooled genome-wide scan of 500 000 single nucleotide polymorphisms, PLoS One, 2008, vol. 3, no. 10. e3490. https://doi.org/10.1371/journal.pone.0003490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinelli-Boneschi, F., Esposito, F., Brambilla, P, et al., A genome-wide association study in progressive multiple sclerosis, Mult. Scler., 2012, vol. 18, no. 10, pp. 1384—1394. https://doi.org/10.1177/1352458512439118

    Article  CAS  PubMed  Google Scholar 

  15. Jakkula, E., Leppa, V., Sulonen, A.M., et al., Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene, Am. J. Hum. Genet., 2010, vol. 86, no. 2, pp. 285—291. https://doi.org/10.1016/j.ajhg.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aulchenko, Y.S., Hoppenbrouwers, I.A., Ramagopalan, S.V., et al., Genetic variation in the KIF1B locus influences susceptibility to multiple sclerosis, Nat. Genet., 2008, vol. 40, no. 12, pp. 1402—1403. https://doi.org/10.1038/ng.251

    Article  CAS  PubMed  Google Scholar 

  17. Nischwitz, S., Cepok, S., Kroner, A., et al., Evidence for VAV2 and ZNF433 as susceptibility genes for multiple sclerosis, J. Neuroimmunol., 2010, vol. 227, nos. 1—2, pp. 162—166. https://doi.org/10.1016/j.jneuroim.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J.Z., van Sommeren, S., Huang, H., et al., Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations, Nat. Genet., 2015, vol. 47, no. 9, pp. 979—986. https://doi.org/10.1038/ng.3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lvovs, D., Favorova, O.O., and Favorov, A.V., A polygenic approach to the study of polygenic diseases, Acta Natur., 2012, vol. 4, no. 3, pp. 59—71.

    Article  CAS  Google Scholar 

  20. Purcell, S., Neale, B., Todd-Brown, K., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet., 2007, vol. 81, no. 3, pp. 559—575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Favorov, A.V., Andreewski, T.V., Sudomoina. M.A., et al., A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans, Genetics, 2005, vol. 171, no. 4, pp. 2113—2121. https://doi.org/10.1534/genetics.105.048090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mckay, F.C., Swain, L.I., Schibeci, S.D., et al., Haplotypes of the interleukin 7 receptor alpha gene are correlated with altered expression in whole blood cells in multiple sclerosis, Genes Immun., 2008, vol. 9, no. 1, pp. 1—6. https://doi.org/10.1038/sj.gene.6364436

    Article  CAS  PubMed  Google Scholar 

  23. Hoe, E., McKay, F., Schibeci, S., et al., Interleukin 7 receptor alpha chain haplotypes vary in their influence on multiple sclerosis susceptibility and response to interferon Beta, J. Interferon Cytokine Res., 2010, vol. 30, no. 5, pp. 291–298. https://doi.org/10.1089/jir.2009.0060

    Article  CAS  PubMed  Google Scholar 

  24. Shamim, Z., Spellman, S., Haagenson, M., et al., Polymorphism in the interleukin-7 receptor-alpha and outcome after allogeneic hematopoietic cell transplantation with matched unrelated donor, Scand. J. Immunol., 2013, vol. 78, no. 2, pp. 214—220. https://doi.org/10.1111/sji.12077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hahn, W.-H., Suh, J.-S., Park, H.-J., and Cho, B.-S., Interleukin 7 receptor gene polymorphisms and haplotypes are associated with susceptibility to IgA nephropathy in Korean children, Exp. Ther. Med., 2011, vol. 2, no. 6, pp. 1121—1126. https://doi.org/10.3892/etm.2011.322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, J.-Y., Lin, C.-C., Lin, C.G.-J., et al., Polymorphisms of interleukin 7 receptor are associated with mite-sensitive allergic asthma in children in Taiwan, Tzu. Chi. Med. J., 2010, vol. 22, no. 1, pp. 18—23. https://doi.org/10.1016/S1016-3190(10)-60030-4.

  27. Kurz, T., Hoffjan, S., Hayes, M.G., et al., Fine mapping and positional candidate studies on chromosome 5p13 identify multiple asthma susceptibility loci, J. Allergy Clin. Immunol., 2006, vol. 118, no. 2, pp. 396—402. https://doi.org/10.1016/j.jaci.2006.04.036

    Article  CAS  PubMed  Google Scholar 

  28. Kim, Y.G., Ihm, C.-G., Lee, T.W., et al., Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation, Transplantation, 2012, vol. 93, no. 9, pp. 900—907. https://doi.org/10.1097/TP.0b013e3182497534

    Article  CAS  PubMed  Google Scholar 

  29. Puel, A., Ziegler, S.F., Buckley, R.H., and Leonard, W.J., Defective IL7R expression in T-B+NK+ severe combined immunodeficiency, Nat Genet., 1998, vol. 20, no. 4, pp. 394—397.

    Article  CAS  PubMed  Google Scholar 

  30. Sikora, M., Laayouni, H., Menendez, C., et al., A targeted association study of immunity genes and networks suggests novel associations with placental malaria infection, PLoS One, 2011, vol. 6, no. 9. https://doi.org/ARTNe2499610.1371/journal.pone.0024996

  31. Suhre, K. and Arnold, M., Connecting genetic risk to disease end points through the human blood plasma proteome, Nat. Commun., 2017, vol. 8, p. 14357. https://doi.org/10.1038/ncomms14357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ballesteros-Tato, A., Beyond regulatory T cells: the potential role for IL-2 to deplete T-follicular helper cells and treat autoimmune diseases, Immunotherapy, 2014, vol. 6, no. 11, pp. 1207—1220. https://doi.org/10.2217/imt.14.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hafler, D.A., Compston, A., Sawcer, S., et al., Risk alleles for multiple sclerosis identified by a genomewide study, N. Eng. J. Med., 2007, vol. 357, no. 9, pp. 851—862. https://doi.org/10.1056/NEJMoa073493

    Article  CAS  Google Scholar 

  34. Bahlo, M., Booth, D.R., Broadley, S.A., et al., Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20, Nat. Genet., 2009, vol. 41, no. 7, pp. 824—828. https://doi.org/10.1038/ng.396

    Article  CAS  Google Scholar 

  35. Hoffmann, S.C., Stanley, E.M., Darrin Cox, E., et al., Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes, Transplantation, 2001, vol. 72, no. 8, pp. 1444—1450. https://doi.org/10.1097/00007890-200110270-00019

    Article  CAS  PubMed  Google Scholar 

  36. Watanabe, Y., Nunokawa, A., Shibuya, M., et al., Association study of interleukin 2 (IL2) and IL4 with schizophrenia in a Japanese population, Eur. Arch. Psychiatry Clin. Neurosci., 2008, vol. 258, no. 7, pp. 422—427. https://doi.org/10.1007/s00406-008-0813-z

    Article  PubMed  Google Scholar 

  37. Alcina, A., Fedetz, M., Ndagire, D., et al., IL2RA/CD25 gene polymorphisms: uneven association with multiple sclerosis (MS) and type 1 diabetes (T1D), PLoS One, 2009, vol. 4, no. 1, p. e4137. https://doi.org/10.1371/journal.pone.0004137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paternoster, L., Standl, M., Waage, J., et al., Multi-ancestry genome-wide association study of 21 000 cases and 95 000 controls identifies new risk loci for atopic dermatitis, Nat Genet., 2015, vol. 47, no. 12, pp. 1449—1456. https://doi.org/10.1038/ng.3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. R. Timasheva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study was performed in accordance with the ethical principles of medical research involving human subjects enshrined in the Declaration of Helsinki (2013). Written informed voluntary consent was obtained from each study participant.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timasheva, Y.R., Zaplakhova, O.V., Nasibullin, T.R. et al. Association between Allelic Variants of IL2, IL2RA, and IL7R Genes and Multiple Sclerosis. Russ J Genet 55, 487–494 (2019). https://doi.org/10.1134/S1022795419030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419030153

Keywords:

Navigation