Skip to main content
Log in

Activities Analysis and Polymorphisms Identification of GPIHBP1 Promoter Region in Porcine

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

GPIHBP1 is expressed restrictively in capillary endothelial cells, but the transcriptional regulation mechanisms of GPIHBP1 in capillaries are still unknown. Here, we analyzed the promoter activities of porcine GPIHBP1 using dual luciferase reporter assays and detected single nucleotide polymorphisms (SNPs) in the promoter region. Activity analysis discovered that the sequence from–187 to +174 is a basal promoter region, the sequence from–187 to–582 is a positive regulation region, whereas the sequence from–582 to–1321 is a negative regulation region. 11 SNPs were found in the promoter region of porcine GPIHBP1, and the g.-796G>A SNP within the NF-l-binding site is associated with pig back fat thickness. The work performed here will serve as a valuable resource for discovering the expression regulation mechanism of GPIHBP1 and promoting further development of pig as a model organism for human cardiovascular disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Havel, R.J. and Kane, J.P., Introduction: structure and metabolism of plasma lipoproteins, in The Metabolic and Molecular Bases of Inherited Disease, Scriver, C.R., Ed., New York: McGraw-Hill, 2001, pp. 2705–2716.

    Google Scholar 

  2. Olivecrona, T. and Olivecrona, G., The ins and outs of adipose tissue, in Cellular Lipid Metabolism, Ehnholm, C., Ed., Heidelberg: Springer-Verlag, 2009, pp. 315–369.

    Chapter  Google Scholar 

  3. Nikolaev, I.V., Mulyukova, R.V., Kayumova, L.R., et al., Analysis of interactions of lipid metabolism alleles in dyslipidemia, Russ. J. Genet.: Appl. Res., 2014, vol. 5, no. 4, pp. 313–321.

    Article  CAS  Google Scholar 

  4. Obunike, J.C., Lutz, E.P., Li, Z., Paka, L., Katopodis, T., et al., Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor, J. Biol. Chem., 2001, vol. 276, no. 12, pp. 8934–8941.

    Article  PubMed  CAS  Google Scholar 

  5. Ioka, R.X., Kang, M.-J., Kamiyama, S., Kim, D.-H., Magoori, K., et al., Expression cloning and characterization of a novel glycosylphosphatidylinositolanchored high density lipoprotein-binding protein, GPI-HBP1, J. Biol. Chem., 2003, vol. 278, no. 9, pp. 7344–7349.

    Article  PubMed  CAS  Google Scholar 

  6. Beigneux, A.P., Davies, B.S., Gin, P., et al., Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons, Cell Metab., 2007, vol. 5, no. 4, pp. 279–291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Davies, B.S., Beigneux, A.P., Barnes, R.H., et al., GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries, Cell Metab., 2010, vol. 12, no. 1, pp. 42–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gin, P., Beigneux, A.P., Davies, B., et al., Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution, BBA-Mol. Cell Biol. L., 2007, vol. 1771, no. 12, pp. 1464–1468.

    Article  CAS  Google Scholar 

  9. Gerhard, D.S., Wagner, L., Feingold, E.A., et al., The status, quality, and expansion of the NIH full-length cDNA project, Genome Res., 2004, vol. 14, no. 14, pp. 2121–2127.

    PubMed  Google Scholar 

  10. Gibbs, R.A., Weinstock, G.M., Metzker, M.L., et al., Genome sequence of the Brown Norway rat yields insights into mammalian evolution, Nature, 2004, vol. 428, no. 6982, pp. 493–521.

    Article  PubMed  CAS  Google Scholar 

  11. Thierry-Mieg, D. and Thierry-Mieg, J., AceView: a comprehensive cDNA-supported gene and transcripts, Genome Biol., 2006, vol. 7, p. S12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu, H.M., Tao, X.L., Wei, Y.Y., et al., Cloning of porcine GPIHBP1 gene and its tissue expression pattern and genetic effect on adipose traits, Gene, 2015, vol. 557, no. 2, pp. 146–153.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, J. and Hegele, R.A., Homozygous missense mutation (G56R) in glycosylphosphatidylinositolanchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650), Lipids Health Dis., 2007, vol. 6, no. 1, pp. 1200–1205.

    Google Scholar 

  14. Beigneux, A.P., Franssen, R., Bensadoun, A., et al., Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase, Arterioscler. Thromb. Vasc. Biol., 2009, vol. 29, no. 6, pp. 956–962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Franssen, R., Young, S.G., Peelman, F., et al., Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects, Circ. Cardiovasc. Genet., 2010, vol. 3, no. 2, pp. 169–178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Olivecrona, G., Ehrenborg, E., Semb, H., et al., Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia, J. Lipid Res., 2010, vol. 51, no. 6, pp. 1535–1545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Charrière, S., Peretti, N., Bernard, S., et al., GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia, J. Clin. Endocrinol. Metab., 2011, vol. 96, no. 96, pp. e1675–e1679.

    Article  PubMed  CAS  Google Scholar 

  18. Coca-Prieto, I., Kroupa, O., Gonzalez-Santos, P., et al., Childhood-onset chylomicronaemia with reduced plasma lipoprotein lipase activity and mass: identification of a novel GPIHBP1 mutation, J. Int. Med., 2011, vol. 270, no. 3, pp. 224–228.

    Article  CAS  Google Scholar 

  19. Olafsen, T., Young, S.G., Davies, B.S., et al., Unexpected expression pattern for glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) in mouse tissues revealed by positron emission tomography scanning, J. Biol. Chem., 2010, vol. 285, no. 285, pp. 39239–39248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Davies, B.S., Waki, H., Beigneux, A.P., et al., The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by peroxisome proliferator-activated receptor-γ, Mol. Endocrinol., 2008, vol. 22, no. 11, pp. 2496–2504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lunney, J.K., Advances in swine biomedical model genomics, Int. J. Biol. Sci., 2007, vol. 3, no. 3, pp. 179–184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Simon, G.A. and Maibach, H.I., The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations–an overview, Skin Pharmacol. Physiol., 2000, vol. 13, no. 5, pp. 229–234.

    Article  CAS  Google Scholar 

  23. Jiang, Y.Z., Cen, W.M., Xing, S.H., et al., Tissue expression pattern and polymorphism of G0S2 gene in porcine, Gene, 2014, vol. 539, no. 1, pp. 173–179.

    Article  PubMed  CAS  Google Scholar 

  24. Kuscu, C., Evensen, N., Kim, D., et al., Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer, PLoS One, 2012, vol. 7, no. 9, p. e44661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zheng, J., Long, L., Hu, J., et al., Isolation and sequence analysis of Sox genes in the red crucian carp (Carassius carassius red variety), Russ. J. Genet., 2008, vol. 44, no. 11, pp. 1325–1330.

    Article  CAS  Google Scholar 

  26. Bell, D.M., Leung, K.K., Wheatley, S.C., et al., SOX9 directly regulates the type-II collagen gene, Nat. Genet., 1997, vol. 16, no. 2, pp. 174–178.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu, L. and Li, X.-W., PCR-RFLP polymorphisms and genetic effects of MyoD gene in different pig breeds, Acta Vet. Zootech. Sin., 2005, vol. 36, no. 8, pp. 761–766.

    Google Scholar 

  28. Bagwell, A.M., Bailly, A., Mychaleckyj, J.C., et al., Comparative genomic analysis of the HNF-4α transcription factor gene, Mol. Genet. Metab., 2004, vol. 81, no. 2, pp. 112–121.

    Article  PubMed  CAS  Google Scholar 

  29. Horikawa, Y., Oda, N., Cox, N.J., et al., Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus, Nat. Genet., 2000, vol. 26, no. 26, pp. 163–175.

    Article  PubMed  CAS  Google Scholar 

  30. Silander, K., Mohlke, K.L., Scott, L.J., et al., Genetic variation near the hepatocyte nuclear factor-4α gene predicts susceptibility to type 2 diabetes, Diabetes, 2004, vol. 53, no. 4, pp. 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  31. Bagwell, A.M., Bento, J.L., Mychaleckyj, J.C., et al., Genetic analysis of HNF4A polymorphisms in Caucasian-American type 2 diabetes, Diabetes, 2005, vol. 54, no. 4, pp. 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  32. Hani, E., Suaud, L., Boutin, P., et al., A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human lateonset non-insulin-dependent diabetes mellitus, J. Clin. Invest., 1998, vol. 101, no. 3, pp. 521–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhu, Q., Yamagata, K., Miura, A., et al., T130I mutation in HNF-4α gene is a loss-of-function mutation in hepatocytes and is associated with late-onset type 2 diabetes mellitus in Japanese subjects, Diabetologia, 2003, vol. 46, no. 4, pp. 567–573.

    Article  PubMed  CAS  Google Scholar 

  34. Odom, D.T., Zizlsperger, N., Gordon, D.B., et al., Control of pancreas and liver gene expression by HNF transcription factors, Science, 2004, vol. 303, no. 5662, pp. 1378–1381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Demina, Y.P., Miroshnikova, V.V., Mayorov, N.V., et al., Reduction of the level of LXRβ mRNA and PPARγ mRNA in macrophages stimulated with a macrophage colony-stimulating factor in patients with atherosclerosis, Russ. J. Genet.: Appl. Res., 2015, vol. 5, no. 2, pp. 155–158.

    Article  CAS  Google Scholar 

  36. Graves, R., Tontonoz, P., Ross, S., and Spiegelman, B., Identification of a potent adipocyte-specific enhancer: involvement of an NF-1-like factor, Genes Dev., 1991, vol. 5, no. 3, pp. 428–437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jiang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, Y., Wei, Y. et al. Activities Analysis and Polymorphisms Identification of GPIHBP1 Promoter Region in Porcine. Russ J Genet 54, 680–686 (2018). https://doi.org/10.1134/S1022795418060042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418060042

Keywords

Navigation