Skip to main content
Log in

The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Polyploidy is the major mechanism of speciation in flowering plants. All genomes of ancient species that are the progenitors of extant plant species experienced polyploidization. Three consecutive stages of polyploidization, i.e., ancient polyploidization, tetra-, and hexaploidization, resulted in the emergence of modern allohexaploid bread wheat Triticum aestivum L. with the BBAADD genome. Polyploidization and subsequent stabilization of the polyploid genome of T. aestivum led, on one hand, to cytological diploidization and, on the other hand, to structural and functional asymmetry of its three subgenomes. In recent years, there has been a sharp increase in the data accumulation on the origin and structure of the bread wheat genomes a result of analysis of genomes and transcripomes of natural and synthetic wheats using modern mapping and sequencing methods. This review provides up-to-date information on the peculiarities of the T. aestivum genome reorganization, which affected its structure and functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Z.J., Molecular mechanisms of polyploidy and hybrid vigor, Trends Plant Sci., 2010, vol. 15, pp. 57–71. doi 10.1016/j.tplants.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mayfield, D., Chen, Z.J., and Pires, J.C., Epigenetic regulation of flowering time in polyploids, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 174–178. doi 10.1016/j.pbi.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Soltis, D.E., Albert, V.A., Leebens-Mack, J., et al., Polyploidy and angiosperm diversification, Am. J. Bot., 2009, vol. 96, no. 1, pp. 336–348. doi 10.3732/ajb.0800079

    Article  PubMed  Google Scholar 

  4. Stebbins, G.L., Types of polyploids: their classification and significance, Adv. Genet., 1947, vol. 1, pp. 403–429.

    PubMed  Google Scholar 

  5. Madlung, A. and Wendel, J.F., Genetic and epigenetic aspects of polyploid evolution in plants, Cytogenet. Genome Res., 2013, vol. 140, nos. 2–4, pp. 270–285. doi 10.1159/000351430

    Article  CAS  PubMed  Google Scholar 

  6. Otto, S.P. and Whitton, J., Polyploid incidence and evolution, Annu. Rev. Genet., 2000, vol. 34, pp. 401–437. doi 10.1146/annurev.genet.34.1.401

    Article  CAS  PubMed  Google Scholar 

  7. Cui, L., Wall, P.K., Leebens-Mack, J.H., et al., Widespread duplications throughout the history of flowering plants, Genome Res., 2006, vol. 16, pp. 738–749. doi 10.1101/gr.4825606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leitch, A.R. and Leitch, I.J., Genomic plasticity and the diversity of polyploid plants, Science, 2008, vol. 320, no. 5875, pp. 481–483. doi 10.1126/science. 1153585

    Article  CAS  PubMed  Google Scholar 

  9. Amborella Genome Project, The Amborella genome and the evolution of flowering plants, Science, 2013, vol. 342, p. 1241089. doi 10.1126/science.1241089

  10. Renny-Byfield, S. and Wendel, J.F., Doubling down on genomes: polyploidy and crop plants, Am. J. Bot., 2014, vol. 101, no. 10, pp. 1711–1725. doi 10.3732/ajb.1400119

    Article  PubMed  Google Scholar 

  11. Garsmeur, O., Schnable, J.C., Almeida, A., et al., Two evolutionarily distinct classes of paleopolyploidy, Mol. Biol. Evol., 2013, vol. 31, pp. 448–454. doi 10.1093/molbev/mst230

    Article  PubMed  CAS  Google Scholar 

  12. Kim, E.S., Bol’sheva, N.L., Samatadze, T.E., et al., The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1329–1337. doi 10.1134/S1022795409110076

    Article  CAS  Google Scholar 

  13. Rodionov, A.V., Polyploidy and interspecific hybridization in the evolution of flowering plants, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4/2, pp. 916–929.

    Google Scholar 

  14. Salse, J., Bolot, S., Throude, M., et al., Identification and characterization of conserved duplications between rice and wheat provide new insight into grass genome evolution, Plant Cell, 2008, vol. 20, pp. 11–24. doi 10.1105/tpc.107.056309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murat, F., Xu, J.H., Tannier, E., et al., Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution, Genome Res., 2010, vol. 20, no. 11, pp. 1545–1557. doi 10.1101/gr.109744.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murat, F., Zhang, R., Guizard, S., et al., Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes, Genome Biol. Evol., 2014, vol. 6, pp. 12–33. doi 10.1093/gbe/evt200

    Article  PubMed  Google Scholar 

  17. Pont, C., Murat, F., Guizard, S., et al., Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo-and neoduplicated subgenomes, Plant J., 2013, vol. 76, no. 6, pp. 1030–1044. doi 10.1111/tpj.12366

    Article  CAS  PubMed  Google Scholar 

  18. Shcherban’, A.B., The reorganization of plant genomes during allopolyploidization, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 6, pp. 444–450. https://doi.org/10.1134/S2079059713060087.

    Article  Google Scholar 

  19. Badaeva, E.D. and Salina, E.A., Genome structure and the chromosome analysis of plants, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4/2, pp. 1017–1043.

    Google Scholar 

  20. International Wheat Genome Sequencing Consortium, A chromosome based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science, 2014, vol. 345, no. 80, pp. 1250092–1250092. doi 10.1126/science.1251788

    Google Scholar 

  21. Feldman, M., Levy, A.A., Fahima, T., and Korol, A., Genomic asymmetry in allopolyploid plants: wheat as a model, J. Exp. Bot., 2012, vol. 63, no. 14, pp. 5045–5059. doi 10.1093/jxb/ers192

    Article  CAS  PubMed  Google Scholar 

  22. Leach, L.J., Belfield, E.J., Jiang, C., et al., Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat, BMC Genomics, 2014, vol. 15, p. 276. doi 10.1186/1471-2164-15-276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Matsuoka, Y., Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization, and allopolyploid speciation in their diversification, Plant Cell Physiol., 2011, vol. 52, pp. 750–764. doi 10.1093/pcp/pcr018

    Article  CAS  PubMed  Google Scholar 

  24. Salina, E.A., Lim, K.Y., Badaeva, E.D., et al., Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids, Genome, 2006, vol. 49, no. 8, pp. 1023–1035. doi 10.1139/g06-050

    Article  CAS  PubMed  Google Scholar 

  25. Salse, J., Chagué, V., Bolot, S., et al., New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides, BMC Genomics, 2008, vol. 9, p. 555. doi 1471-2164/9/555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Marcussen, T., Sandve, S.R., Heier, L., et al., Ancient hybridizations among the ancestral genomes of bread wheat, Science, 2014, vol. 45, no. 6419, p. 1250092. doi 10.1126/science.1250092

    Article  CAS  Google Scholar 

  27. Jones, N. and Pasakinskien, I., Genome conflict in the Gramineae, New Phytol., 2005, vol. 165, pp. 391–410. doi 10.1111/j.1469-8137.2004.01225.x

    Article  PubMed  Google Scholar 

  28. Flavell, R.B., Rimpau, J., and Smith, D.B., Repeated sequence DNA relationships in 4 cereal genomes, Chromosoma, 1977, vol. 63, no. 3, pp. 205–222.

    Article  CAS  Google Scholar 

  29. Wanjugi, H., Coleman-Derr, D., Huo, N., et al., Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat, Genome, 2009, vol. 52, no. 6, pp. 576–587. doi 10.1139/g09-033

    Article  CAS  PubMed  Google Scholar 

  30. Sears, E.R., Wheat cytogenetics, Annu. Rev. Genet., 1969, vol. 3, pp. 451–468.

    Article  Google Scholar 

  31. Levy, A.A. and Feldman, M., Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization, Biol. J. Linn. Soc., 2004, vol. 82, no. 4, pp. 607–613. doi 10.1111/j.1095-8312.2004.00346.x

    Article  Google Scholar 

  32. Wicker, T., Mayer, K.F., Gundlach, H., et al., Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives, Plant Cell, 2011, vol. 23, no. 5, pp. 1706–1718. doi 10.1105/tpc.111.086629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feldman, M., Liu, B., Segal, G., et al., Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes, Genetics, 1997, vol. 147, pp. 1381–1387.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops–Triticum) group, Plant Cell, 2001, vol. 13, pp. 1735–1747. doi 10.1105/TPC.010082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ozkan, H., Tuna, M., and Arumuganathan, K., Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops–Triticum) group, J. Hered., 2003, vol. 94, pp. 260–264. doi 10.1093/jhered/esg053

    Article  CAS  PubMed  Google Scholar 

  36. Han, F.P., Fedak, G., Quellet, T., and Liu, B., Rapid genomic exchanges in interspecific and intergeneric hybrids and allopolyploids of Triticeae, Genome, 2003, vol. 46, pp. 716–723. doi 10.1139/g03-049

    Article  CAS  PubMed  Google Scholar 

  37. Salina, E.A., Numerova, O.M., Ozkan, H., and Feldman, M., Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat, Genome, 2004, vol. 47, pp. 860–867. doi 10.1139/g04-044

    Article  CAS  PubMed  Google Scholar 

  38. Eilam, T., Anikster, Y., Millet, E., et al., Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum, Genome, 2008, vol. 51, no. 8, pp. 616–627. doi 10.1139/G08-043

    Article  CAS  PubMed  Google Scholar 

  39. Feldman, M. and Levy, A.A., Genome evolution in allopolyploid wheat–a revolutionary reprogramming followed by gradual changes, J. Genet. Genomics, 2009, vol. 36, pp. 511–518. doi 10.1016/S1673-8527(08)60142-3

    Article  CAS  PubMed  Google Scholar 

  40. Raats, D., Frenkel, Z., Krugman, T., et al., The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution, Genome Biol., 2013, vol. 14, p. R138. doi 10.1186/gb-2013-14-12-r138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Philippe, R., Paux, E., Bertin, I., et al., A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat, Genome Biol., 2013, vol. 14, p. R64. doi 10.1186/gb-2013-14-6-r64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sehgal, S.K., Li, W., Rabinowicz, P.D., et al., Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat, BMC Plant Biol., 2012, vol. 12, p. 64. doi 10.1186/1471-2229-12-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choulet, F., Wicker, T., Rustenholz, C., et al., Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces, Plant Cell, 2010, vol. 22, no. 6, pp. 1686–1701. doi 10.1105/tpc.110.074187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choulet, F., Alberti, A., Theil, S., et al., Structural and functional partitioning of bread wheat chromosome 3B, Science, 2014, vol. 345, no. 6194, p. 1249721. doi 10.1126/science.1249721

    Article  PubMed  CAS  Google Scholar 

  45. Pingault, L., Choulet, F., Alberti, A., et al., Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome, Genome Biol., 2015, vol. 16, p. 29. doi 10.1186/s13059-015-0601-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bartoš, J., Vlček, C., Choulet, F., et al., Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat, BMC Plant Biol., 2012, vol. 12, p. 155. doi 10.1186/1471-2229-12-155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hernandez, P., Martis, M., Dorado, G., et al., Nextgeneration sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content, Plant J., 2012, vol. 69, no. 3, pp. 377–386. doi 10.1111/j.1365-313X.2011.04808.x

    Article  CAS  PubMed  Google Scholar 

  48. Helguera, M., Rivarola, M., Clavijo, B., et al., New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing, Plant Sci., 2015, vol. 233, pp. 200–212. doi 10.1016/j.plantsci.2014.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vitulo, N., Albiero, A., Forcato, C., et al., First survey of the wheat chromosome 5A composition through a next generation sequencing approach, PLoS One, 2011, vol. 6, no. 10. e26421. doi 10.1371/journal. pone.0026421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sergeeva, E.M., Afonnikov, D.A., Koltunova, M.K., et al., Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing, Plant Genome, 2014, vol. 7, pp. 1–16. doi 10.3835/plantgenome2013.10.0031

    Article  CAS  Google Scholar 

  51. Lucas, S.J., Akpınar, B.A., Šimková, H., et al., Nextgeneration sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications, BMC Genomics, 2014, vol. 15, p. 1080. doi 10.1186/1471-2164-15-1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tanaka, T., Kobayashi, F., Joshi, G.P., et al., Nextgeneration survey sequencing and the molecular organization of wheat chromosome 6B, DNA Res., 2014, vol. 1, no. 2, pp. 103–114. doi 10.1093/dnares/dst041

    Article  CAS  Google Scholar 

  53. Kobayashi, F., Wu, J., Kanamori, H., et al., A highresolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B, BMC Genomics, 2015, vol. 16, p. 595. doi 10.1186/s12864-015-1803-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Berkman, P.J., Skarshewski, A., Lorenc, M.T., et al., Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS, Plant Biotechnol. J., 2011, vol. 9, no. 7, pp. 768–775. doi 10.1111/j.1467-7652.2010.00587.x

    Article  CAS  PubMed  Google Scholar 

  55. Berkman, P.J., Skarshewski, A., Manoli, S., et al., Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation, Theor. Appl. Genet., 2012, vol. 124, no. 3, pp. 423–432. doi 10.1007/s00122-011-1717-2

    Article  CAS  PubMed  Google Scholar 

  56. Breen, J., Wicker, T., Shatalina, M., et al., A physical map of the short arm of wheat chromosome 1A, PLoS One, 2013, vol. 8, no. 11. e80272. doi 10.1371/journal. pone.0080272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Akpinar, B.A., Magni, F., Yuce, M., et al., The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements, BMC Genomics, 2015, vol. 16, p. 453. doi 10.1186/s12864-015-1641-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Conley, E.J., Nduati, V., Gonzalez-Hernandez, J.L., et al., A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and collinearity with rice, Genetics, 2004, vol. 168, no. 2, pp. 625–637. doi 10.1534/genetics. 104.034801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balcárková, B., Frenkel, Z., Škopová, M., et al., A high resolution radiation hybrid map of wheat chromosome 4A, Front. Plant Sci., 2017, vol. 7, p. 2063. doi 10.3389/fpls.2016.02063

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tiwari, V.K., Heesacker, A., Riera-Lizarazu, O., et al., A whole-genome radiation hybrid mapping resource of hexaploid wheat, Plant J., 2016, vol. 86, pp. 195–207. doi 10.1111/tpj.13153

    Article  CAS  PubMed  Google Scholar 

  61. Brenchley, R., Spannagl, M., Pfeifer, M., et al., Analysis of the bread wheat genome using whole-genome shotgun sequencing, Nature, 2012, vol. 491, no. 7426, pp. 705–710. doi 10.1038/nature11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bolot, S., Abrouk, M., Masood-Quraishi, U., et al., The ‘inner circle’ of the cereal genomes, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 119–125. doi 10.1016/j.pbi.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  63. Mayer, K.F., Martis, M., Hedley, P.E., et al., Unlocking the barley genome by chromosomal and comparative genomics, Plant Cell, 2011, vol. 23, pp. 1249–1263. doi 10.1105/tpc.110.082537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martis, M.M., Zhou, R., Haseneyer, G., et al., Reticulate evolution of the rye genome, Plant Cell, 2013, vol. 25, pp. 3685–3698. doi 10.1105/tpc.113.114553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Naranjo, T., Roca, A., Goicoechea, P.G., and Giraldez, R., Arm homoeology of wheat and rye chromosomes, Genome, 1987, vol. 29, no. 6, pp. 873–882. doi 10.1139/g87-149

    Article  Google Scholar 

  66. Devos, K.M., Dubcovsky, J., Dvorak, J., et al., Structural evolution of wheat chromosomes 4a, 5a, and 7b and its impact on recombination, Theor. Appl. Genet., 1995, vol. 91, no. 2, pp. 282–288. doi 10.1007/BF00220890

    Article  CAS  PubMed  Google Scholar 

  67. Li, W., Challa, G.S., Zhu, H., and Wei, W., Recurrence of chromosome rearrangements and reuse of DNA breakpoints in the evolution of the Triticeae genomes, G3 (Bethesda), 2016, vol. 6, no. 12, pp. 3837–3847. doi 10.1534/g3.116.035089

    Article  CAS  Google Scholar 

  68. Qi, L.L., Chen, P.D., Liu, D.J., and Gill, B.S., Homoeologous relationships of Haynaldia villosa chromosomes with those of Triticum aestivum as revealed by RFLP analysis, Genes Genet. Syst., 1999, vol. 74, pp. 77–82. doi 10.1266/ggs.74.77

    Article  CAS  Google Scholar 

  69. Akhunov, E.D., Goodyear, A.W., Geng, S., et al., The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms, Genome Res., 2003, vol. 13, no. 5, pp. 753–763. doi 10.1101/gr.808603GR-8086R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Badaeva, E.D., Dedkova, O.S., Gay, G., et al., Chromosomal rearrangements in wheat: their types and distribution, Genome, 2007, vol. 50, no. 10, pp. 907–926. doi 10.1139/g07-072

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, H., Bian, Y., Gou, X., et al., Persistent wholechromosome aneuploidy is generally associated with nascent allohexaploid wheat, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 3447–3452. doi 10.1073/pnas.1300153110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roder, M.S., Korzun, V., Wendehake, K., et al., A microsatellite map of wheat, Genetics, 1998, vol. 149, pp. 2007–2023.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Akhunov, E.D., Akhunova, A.R., Anderson, O.D., et al., Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes, BMC Genomics, 2010, vol. 11, p. 702. doi 10.1186/1471-2164-11-702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allen, A.M., Barker, G.L., Berry, S.T., et al., Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.), Plant Biotechnol. J., 2011, vol. 9, pp. 1086–1099. doi 10.1111/j.1467-7652.2011. 00628.x

    Article  CAS  PubMed  Google Scholar 

  75. Berkman, P.J., Visendi, P., Lee, H.C., et al., Dispersion and domestication shaped the genome of bread wheat, Plant Biotechnol. J., 2013, vol. 11, no. 5, pp. 564–571. doi 10.1111/pbi.12044

    Article  CAS  PubMed  Google Scholar 

  76. Bottley, A. and Koebner, R.M.D., Variation for homoeologous gene silencing in hexaploid wheat, Plant J., 2008, vol. 56, pp. 297–302. doi 10.1186/1471-2199-8-65

    Article  CAS  PubMed  Google Scholar 

  77. Ge, X.-H., Ding, L., and Li, Z.-Y., Nucleolar dominance and different genome behaviors in hybrids and allopolyploids, Plant Cell Rep., 2013, vol. 32, pp. 1661–1673. doi 10.1007/s00299-013-1475-5

    Article  CAS  PubMed  Google Scholar 

  78. Pfeifer, M., Kugler, K.G., Sandve, S.R., et al., Genome interplay in the grain transcriptome of hexaploid bread wheat, Science, 2014, vol. 345, no. 6194, p. 1250091. doi 10.1126/science.1250091

    Article  PubMed  CAS  Google Scholar 

  79. Pumphrey, M., Bai, J., Laudencia-Chingcuanco, D., et al., Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat, Genetics, 2009, vol. 181, pp. 1147–1157. doi 10.1534/genetics.108.096941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sears, E.R., An induced mutant with homoeologous pairing in common wheat, Can. J. Genet. Cytol., 1977, vol. 19, pp. 585–593.

    Article  Google Scholar 

  81. Moore, G. and Shaw, P., Improving the chances of finding the right partner, Curr. Opin. Genet. Dev., 2009, vol. 19, no. 2, pp. 99–104. doi 10.1016/j.gde.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  82. Luo, M.C., Dubcovsky, J., and Dvorák, J., Recognition of homeology by the wheat Ph1 locus, Genetics, 1996, vol. 144, no. 3, pp. 1195–1203.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Giorgi, B., A homoeologous pairing mutant isolated in Triticum durum cv. Cappelli, Mutat. Breed. Newslett., 1978, vol. 11, pp. 4–5.

    Google Scholar 

  84. Sears, E.R., Genetic control of chromosome pairing in common wheat, Annu. Rev. Genet., 1976, vol. 10, pp. 31–51.

    Article  CAS  PubMed  Google Scholar 

  85. Feldman, M., The effect of chromosomes 5B, 5D, and 5A on chromosomal pairing in Triticum aestivum, Proc. Natl. Acad. Sci. U.S.A., 1966, vol. 55, no. 1, pp. 447–453.

    Google Scholar 

  86. Riley, R., Chapman, V., Young, R.M., and Belfield, A.M., Control of meiotic chromosome pairing by the chromosomes of homoeologous group 5 of Triticum aestivum, Nature, 1966, vol. 212, pp. 1475–1477. doi 10.1038/2121475a0

    Article  Google Scholar 

  87. Boden, S.A., Shadiac, N., Tucker, E.J., et al., Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum), BMC Mol. Biol., 2007, vol. 8, p. 65. doi 10.1186/1471-2199-8-65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Boden, S.A., Langridge, P., Spangenberg, G., and Able, J.A., TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1, Plant J., 2009, vol. 57, no. 3, pp. 487–497. doi 10.1111/j.1365-313X.2008.03701.x

    Article  CAS  PubMed  Google Scholar 

  89. Griffiths, S., Sharp, R., Foote, T.N., et al., Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat, Nature, 2006, vol. 439, no. 7077, pp. 749–752. doi 10.1038/nature04434

    Article  CAS  PubMed  Google Scholar 

  90. Yousafzai, F.K., Al-Kaff, N., and Moore, G., Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals, Funct. Integr. Genomics, 2010, vol. 10, pp. 157–166. doi 10.1007/s10142-010-0170-7

    Article  CAS  PubMed  Google Scholar 

  91. Al-Kaff, N., Knight, E., Bertin, I., et al., Detailed dissection of the chromosomal region containing the Ph1locus in wheat Triticum aestivum: with deletion mutants and expression profiling, Ann. Bot., 2008, vol. 101, pp. 863–872. doi 10.1093/aob/mcm252

    Article  CAS  PubMed  Google Scholar 

  92. Greer, E., Martín, A.C., Pendle, A., et al., The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat, Plant Cell, 2012, vol. 24, no. 1, pp. 152–162. doi 10.1105/tpc.111.094771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sidhu, G.K., Rustgi, S., Shafqat, M.N., et al., Fine structure mapping of a gene-rich region of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 15, pp. 5815–5820. doi 10.1073/pnas.0800931105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bhullar, R., Nagarajan, R., Bennypaul, H., et al., Silencing of a metaphase I-specific gene results in a phenotype similar to that of the Pairing homeologous 1 (Ph1) gene mutations, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 39, pp. 14187–14192. doi 10.1073/pnas.1416241111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Glover, N.M., Daron, J., Pingault, L., et al., Smallscale gene duplications played a major role in the recent evolution of wheat chromosome 3B, Genome Biol., 2015, vol. 16, p. 188. doi 10.1186/s13059-015-0754-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Salina, E.A., Sergeeva, E.M., Adonina, I.G., et al., The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats, BMC Plant Biol., 2011, vol. 11, p. 99. doi 10.1186/1471-2229-11-99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hegarty, M.J. and Hiscock, S.J., Genomic clues to the evolutionary success of review polyploid plants, Curr. Biol., 2008, vol. 18, no. 10, pp. R435–R444. doi 10.1016/j.cub.2008.03.043

    Article  CAS  PubMed  Google Scholar 

  98. Yang, C., Zhao, L., Zhang, H., et al., Evolution of physiological responses to salt stress in hexaploid wheat, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 11882–11887. doi 10.1073/pnas.1412839111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Han, Y., Xin, M., Huang, K., et al., Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat, New Phytol., 2016, vol. 209, no. 2, pp. 721–732. doi 10.1111/nph.13615

    Article  CAS  PubMed  Google Scholar 

  100. Pont, C., Murat, F., Confolent, C., et al., RNA-seq in grain unveils fate of neo-and paleopolyploidization events in bread wheat (Triticum aestivum L.), Genome Biol., 2011, vol. 12, no. 12, p. R119. doi 10.1186/gb-2011-12-12-r119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y.P., Cheng, X., Shan, Q.W., et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol., 2014, vol. 32, pp. 947–951. doi 10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  102. Kenan-Eichler, M., Leshkowitz, D., Tal, L., et al., Wheat hybridization and polyploidization results in deregulation of small RNAs, Genetics, 2011, vol. 188, no. 2, pp. 263–272. doi 10.1534/genetics.111.128348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao, N., Zhu, B., Li, M., et al., Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat, Genetics, 2011, vol. 188, no. 3, pp. 499–510. doi 10.1534/genetics. 111.127688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, H., Bian, Y., Gou, X., et al., Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 19466–19471. doi 10.1073/pnas.1319598110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kashkush, K., Feldman, M., and Levy, A.A., Gene loss, silencing and activation in a newly synthesized wheat allotetraploid, Genetics, 2002, vol. 160, pp. 1651–1659.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaked, H., Kashkush, K., Ozkan, H., et al., Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat, Plant Cell, 2001, vol. 13, pp. 1749–1759. doi 10.1105/TPC.010083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, C., Yang, X., Zhang, H., et al., 4, Plant Mol. Biol., 2015, vol. 88, nos. 1–2, pp. 53–64. doi 10.1007/s11103-015-0307-0

    Article  CAS  PubMed  Google Scholar 

  108. Han, F., Fedak, G., Guo, W., and Liu, B., Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids, Genetics, 2005, vol. 170, pp. 1239–1245. doi 10.1534/genetics.104.039263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bento, M., Gustafson, J.P., Viegas, W., and Silva, M., Size matters in Triticeae polyploids: larger genomes have higher remodeling, Genome, 2011, vol. 54, pp. 175–183. doi 10.1139/G10-107

    Article  PubMed  Google Scholar 

  110. Qi, B., Huang, W., Zhu, B., et al., Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines, BMC Biol., 2012, vol. 10, p. 3. doi 10.1186/1741-7007-10-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guo, X. and Han, F.P., Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat, Plant Cell, 2014, vol. 26, pp. 4311–4327. doi 10.1105/tpc.114.129841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cantu, D., Vanzetti, L.S., Sumner, A., et al., Small RNAs, DNA methylation and transposable elements in wheat, BMC Genomics, 2010, vol. 11, p. 408. doi 10.1186/1471-2164-11-408

    Google Scholar 

  113. Kraitshtein, Z., Yaakov, B., Khasdan, V., and Kashkush, K., Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat, Genetics, 2010, vol. 186, pp. 801–812. doi 10.1534/genetics. 110.120790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ben-David, S., Yaakov, B., and Kashkush, K., Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat, Plant J., 2013, vol. 76, pp. 201–210. doi 10.1111/tpj.12285

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, H., Zhu, B., Qi, B., et al., Evolution of the BBAA component of bread wheat during its history at the allohexaploid level, Plant Cell, 2014, vol. 26, no. 7, pp. 2761–2776. doi 10.1105/tpc.114.128439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Loginova.

Additional information

Original Russian Text © D.B. Loginova, O.G. Silkova, 2018, published in Genetika, 2018, Vol. 54, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginova, D.B., Silkova, O.G. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. Russ J Genet 54, 403–414 (2018). https://doi.org/10.1134/S1022795418040105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418040105

Keywords

Navigation