Skip to main content
Log in

Antigenotoxic activity of biologically active substances from Inula britannica and Limonium gmelini

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The antigenotoxic and antioxidant activities of biologically active substances of extracts from Inula britannica L. and Limonium gmelinii (Willd.) Kuntze in E. coli strains MG1655 (pColD-lux), MG1655 (pSoxS-lux), and MG1655 (pKatG-lux) were studied by the bioluminescent test. Plant extracts from I. britannica and L. gmelinii in all used concentrations (0.5, 5.0, 50.0, and 500.0 μg/mL) had no genotoxic or oxidant activity. The extracts statistically significantly reduced the bioluminescence intensity of the pColD-lux, pKatG-lux, and pSoxS-lux sensors (p < 0.05) induced by 4-NQO and dioxidine, hydrogen peroxide, and paraquat, respectively. The activity of the extracts depended on their concentration; the greatest antigenotoxic and antioxidant effects were detected at a concentration of 500.0 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abilev, S.K. and Glazer, V.M., Mutagenez s osnovami genotoksikologii: uchebnoe posobie (Mutagenesis with the Basics of Genotoxicology: A Tutorial), Moscow: Nestor-Istoriya, 2015.

    Google Scholar 

  2. Natarajan, A., Molnar, P., Sieverdes, K., et al., Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity, Toxicol. In Vitro, 2006, vol. 20, no. 3, pp. 375–381. doi 10.1016/j.tiv.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  3. Holland, N.T., Duramad, P., Rothman, N., et al., Micronucleus frequency and proliferation in human lymphocytes after exposure to herbicide 2,4-dichlorophenoxyacetic acid in vitro and in vivo, Mutat. Res. Gen. Toxicol. Environ. Mutagen., 2002, vol. 521, nos. 1–2, pp. 165–178. doi 10.1016/S1383-5718(02)00237-1

    Article  CAS  Google Scholar 

  4. Goncharova, R.I. and Kuzhir, T.D., Molecular basis of applying antimutagens as anticarcinogens, Ekol. Genet., 2005, vol. 3, no. 3, pp. 19–32.

    CAS  Google Scholar 

  5. Durnev, A.D., Methodical aspects of research on modification of chemical mutagenesis, Byull. Eksp. Biol. Med., 2008, vol. 146, no. 9, pp. 281–287. doi 10.1007/s10517-008-0273-5

    Google Scholar 

  6. Uzun, F., Kalender, S., Durak, D., et al., Malathioninduced testicular toxicity in male rats and the protective effect of vitamins C and E, Food Chem. Toxicol., 2009, vol. 47, no. 8, pp. 1903–1908. doi 10.1016/j.fct.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  7. Słoczyńska, K., Powroźnik, B., Pękala, E., and Waszkielewicz, A.M., Antimutagenic compounds and their possible mechanisms of action, J. Appl. Genet., 2014, vol. 55, no. 2, pp. 273–285. doi 10.1007/s13353-014-0198-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seca, A.M.L., Grigore, A., Pinto, D.C.C.A., and Silva, A.M.S., The genus Inula and their metabolites: from ethnopharmacological to medicinal uses, J. Ethnopharmacol., 2014, vol. 154, no. 2, pp. 286–310. doi 10.1016/j.jep.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  9. Kolumbaeva, S.Zh., Lovinskaya, A.V., Zhusupova, A.I., et al., Toxic and mutagenic activity of biologically active substances from the Limonium gmelinii plants, family Plumbaginaceae (=Limoniaceae Lincz.), Vestn. Kaz. Natc. Univ., Ser. Biol., 2016, vol. 66, no. 1, pp. 144–153.

    Google Scholar 

  10. Kolumbaeva, S.Zh., Lovinskaya, A.V., Akhtaeva, N.Z., et al., Toxic and mutagenic activity of biologically active substances from the Inula britannica L. plants, family Compositae, Vestn. Kaz. Natc. Univ., Ser. Biol., 2016, vol. 69, no. 4, pp. 134–145.

    Google Scholar 

  11. Manukhov, I.V., Kotova, V.Yu., Mal’dov, D.G., et al., Induction of oxidative stress and SOS response in Escherichia coli by vegetable extracts: the role of hydroperoxides and the synergistic effect of simultaneous treatment with cisplatinum, Microbiology (Moscow), 2008, vol. 77, pp. 523–529. https://doi.org/10.1134/S0026261708050020.

    Article  CAS  Google Scholar 

  12. Kotova, V.Yu., Manukhov, I.V., and Zavigel’skii, G.B., Lux-biosensors for the detection of SOS-response, heat shock and oxidative stress, Biotekhnologiya, 2009, no. 6, pp. 16–25. doi 10.1134/S0003683810080089

    Google Scholar 

  13. Zavilgelsky, G.B., Kotova, V.Y., and Manukhov, I.V., Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide, Mutat. Res., 2007, vol. 634, nos. 1–2, pp. 172–176. doi 10.1016/j.mrgentox.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  14. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  15. Farr, S.B. and Kogoma, T., Oxidative stress responses in Escherichia coli and Salmonella typhimurium, Microbiol. Rev., 1991, vol. 55, pp. 561–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Downes, D.J., Chonofsky, M., Tan, K., et al., Characterization of the mutagenic spectrum of 4-nitroquinoline 1-oxide (4-NQO) in Aspergillus nidulans by whole genome sequencing, G3 (Bethesda), 2014, vol. 4, no. 12, pp. 2483–2492. doi 10.1534/g3.114.014712

    Article  PubMed Central  Google Scholar 

  17. Padeiskaya, E.N., Antibacterial preparation Dioxydin: biological effect and importance in the therapy of various forms of purulent infection, Infekts. Antimikrobn. Ter., 2001, no. 5, pp. 150–155.

    Google Scholar 

  18. Sycheva, L.P., Kovalenko, M.A., Sheremet’eva, S.M., et al., Study of the mutagenic action of dioxidine by a multi-organ micronucleus method, Byull. Eksp. Biol. Med., 2004, vol. 138, no. 8, pp. 188–190.

    Article  Google Scholar 

  19. Ordzhonikidze, K.G., Zanadvorova, A.M., and Abilev, S.K., Organ specificity of the genotoxic effects of cyclophosphane and dioxidine: an alkaline comet assay study, Russ. J. Genet., 2011, vol. 47, no. 6, pp. 754–756.

    Article  CAS  Google Scholar 

  20. Rzezniczak, T.Z., Douglas, L.A., Watterson, J.H., et al., Paraquat administration in Drosophila for use in metabolic studies of oxidative stress, Anal. Biochem., 2011, vol. 419, no. 2, pp. 345–347. doi 10.1016/j.ab.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  21. Havsteen, B.H., The biochemistry and medical significance of the flavonoids, Pharmacol. Ther., 2002, vol. 96, nos. 2–3, pp. 67–202. doi 10.1016/S0163-7258(02)00298-X

    Article  CAS  PubMed  Google Scholar 

  22. Lin, Y., Shi, R., Wang, X., et al., Luteolin, a flavonoid with potential for cancer prevention and therapy, Curr. Cancer Drug Targets, 2008, vol. 8, no. 2, pp. 634–646. doi 10.2174/156800908786241050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skopichev, V.G., Bogolyubova, I.O., Zhichkina, L.V., and Maksimyuk, N.N., Ekologicheskaya fiziologiya (Ecological Physiology), St. Petersburg: Kvadro, 2014.

    Google Scholar 

  24. De Flora, S., Mechanisms of inhibitors of mutagenesis and carcinogenesis, Mutat. Res., 1998, vol. 402, pp. 151–158.

    Article  PubMed  Google Scholar 

  25. Bouhlel, I., Mansour, H.B., Limem, I., et al., Screening of antimutagenicity via antioxidant activity in different extracts from the leaves of Acacia salicina from the center of Tunisia, Environ. Toxicol. Pharmacol., 2007, vol. 23, no. 1, pp. 56–63. doi 10.1016/j.etap.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  26. Wu, Ch.-H. and Yen, G.-Ch., Antigenotoxic properties of Cassia tea (Cassia tora L.): mechanism of action and the influence of roasting process, Life Sci., 2004, vol. 76, no. 1, pp. 85–101. doi 10.1016/j.lfs.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  27. Tsao, R. and Deng, Z., Separation procedures for naturally occurring antioxidant phytochemicals, J. Chromatogr., 2004, vol. 812, pp. 85–99. doi 10.1016/j.jchromb.2004.09.028

    CAS  Google Scholar 

  28. Igonina, E.V., Marsova, M.V., and Abilev, S.K., Luxbiosensors: screening of biologically active compounds for genotoxicity, Ekol. Genet., 2016, vol. 14, no. 4, pp. 52–62. doi 10.17816/ecogen14452-14462

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lovinskaya.

Additional information

Original Russian Text © A.V. Lovinskaya, S.Zh. Kolumbayeva, T.M. Shalakhmetova, M.V. Marsova, S.K. Abilev, 2017, published in Genetika, 2017, Vol. 53, No. 12, pp. 1393–1401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovinskaya, A.V., Kolumbayeva, S.Z., Shalakhmetova, T.M. et al. Antigenotoxic activity of biologically active substances from Inula britannica and Limonium gmelini . Russ J Genet 53, 1311–1319 (2017). https://doi.org/10.1134/S1022795417120080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417120080

Keywords

Navigation