Skip to main content
Log in

Studying the Mechanism of Dioxidine Genotoxicity Using Lux Biosensors of Esсherichia coli

  • GENOTOXICOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract—

The ability of the antibacterial agent dioxidine to generate the superoxide anion radical in E. coli cells, induce an SOS response, or cause DNA fragmentation or death of bacteria, as well as the effect of antioxidants on the processes listed, were studied using E. coli luminescent biosensors. Dioxidine induced the SOS response in the pColD-lux biosensor in concentrations typical for the most efficient induction of luminescence in a pSoxS-lux biosensor, the intensity of which depends on the amount of superoxide in the cell. Dioxidine in concentrations of more than 0.001 mol/L caused a decrease in the survival of bacterial cells, which is accompanied by the degradation of their DNA (as demonstrated by electrophoretic analysis). DNA degradation increased with an increase in the dioxidine concentration and decreased in the presence of the antioxidants glutathione and acetylcysteine. Antioxidants weakened the induction of the SOS response by dioxidine, as well as generation of superoxide radicals. Likely mechanisms of the formation of the hydroxyl radical during the reduction of the dioxidine NO group by bacterial reductases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Padeiskaya, E.N., Rational use of dioxidine for treatment of purulent infections (based on the results of a clinical study), in Antibakterial’nye preparaty (Antibacterial Preparations), Moscow, 1984, pp. 6–23.

    Google Scholar 

  2. Padeiskaya, E.N., Antibacterial drug dioxidin: specific biological action and role in the treatment of various forms of purulent infection, Infekts. Antimikrob. Ter., 2001, no. 5, pp. 150–155.

  3. Popov, D.A., Anuchina, N.M., Terent’ev, A.A., et al., Dioxidine: antimicrobial activity and possible clinical application at the present stage, Antibiot. Khimioter., 2013, vol. 58, nos. 3–4, pp. 37–42.

    CAS  Google Scholar 

  4. Fonshtein, L.M., Abilev, S.K., Akin’shina, L.P., et al., Investigation of the genetic effects of drugs and other biologically active compounds in tests for mutagenesis and DNA-damaging action, Pharm. Chem. J., 1982, vol. 16, no. 10, pp. 721–726.

    Article  Google Scholar 

  5. Fonstein, L.M., Revazova, Yu.A., Zolotareva, G.N., et al., The mutagenic activity of dioxidine, Genetika, 1985, vol. 21, no. 5, pp. 11–19.

    Google Scholar 

  6. Sycheva, L.P., Kovalenko, M.A., Sheremet’eva, S.M., et al., Study of mutagenic activity of dioxidine by the polyorgan micronuclear method, Bull. Exp. Biol. Med., 2004, vol. 138, no. 2, pp. 165–167.

    Article  CAS  Google Scholar 

  7. Abilev, S.K. and Abdrazakov, M.M., Organospecificity of the DNA-damaging action of dioxidine, Genetika, 1991, vol. 27, no. 11, pp. 2039–2041.

    CAS  PubMed  Google Scholar 

  8. Durnev, A.D. and Seredenin, S.B., Mutageny. Skrining i farmakologicheskaya profilaktika vozdeistvii (Mutagens: Screening and Pharmacological Prevention of Exposures), Moscow: Meditsina, 1998.

  9. Durnev, A.D., Dubovskaya, O.Yu., Nigarova, E.A., et al., The role of free radicals of oxygen in the mutagenic action mechanism of dioxidine, Khim.-Farm. Zh., 1989, vol. 23, no. 11, pp. 1289–1291.

    CAS  Google Scholar 

  10. Durnev, A.D., Sazontova, T.G., Guseva, N.V., and Seredenin, S.B., Effect of dioxydine and cyclophosphane on lipid peroxidation and superoxide dismutase and catalase activities in C57Bl/6 and BALB/c mice, Bull. Exp. Biol. Med., 1996, vol. 121, no. 5, pp. 478–481.

    Article  Google Scholar 

  11. Carta, A., Corona, P., and Loriga, M., Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities, Cur. Med. Chem., 2005, vol. 12, no. 19, pp. 2259–2272. https://doi.org/10.2174/0929867054864831

    Article  CAS  Google Scholar 

  12. Ramli, Y., Moussaif, A., Karrouchi, K., and Essassi, E.M., Pharmacological profile of quinoxalinone, J. Chem., 2014, vol. 2014, art. ID 563406. https://doi.org/10.1155/2014/563406

    Article  CAS  Google Scholar 

  13. Cheng, G., Sa, W., Cao, C., et al., Quinoxaline 1,4-di-N-oxides: biological activities and mechanisms of actions, Front. Pharmacol., 2016, vol. 7, pp. 1–21. https://doi.org/10.3389/fphar.2016.00064

    Article  CAS  Google Scholar 

  14. Wang, X., Martínez, M.A., Cheng, G., et al., The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo, Drug Metab. Rev., 2016, vol. 48, no. 2, pp. 159–182. https://doi.org/10.1080/03602532.2016.1189560

    Article  CAS  PubMed  Google Scholar 

  15. Mazanko, M.S., Chistyakov, V.A., Prazdnova, E.V., et al., Dioxidine induces bacterial resistance to antibiotics, Mol. Genet. Microbiol. Virol., 2016, vol. 31, no. 4, pp. 227–232. https://doi.org/10.3103/S0891416816040066

    Article  Google Scholar 

  16. Kotova, V.Yu., Manukhov, I.V., and Zavilgelsry, G.B., Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress, Appl. Biochem. Microbiol., 2010, vol. 46, no. 8, pp. 781–788. https://doi.org/10.1134/S0003683810080089

    Article  CAS  Google Scholar 

  17. Padeiskaya, E.N., Tyurin, I.I., and Pershin, G.N., Submicroscopic changes in cells of E. coli and St. aureus affected by dioxidine, Farm. Toksikol., 1974, no. 1, p. 80.

  18. Fonshtein, L.M., Abilev, S.K., Akin’shina, L.P., and Zekhnov, A.M., Study of the mutagenic action of certain drug preparations on indicator bacteria, Pharm. Chem. J., 1978, vol. 12, no. 1, pp. 35–40.

    Article  Google Scholar 

  19. Suter, W., Rosselet, A., and Knüse, F., Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli, Antimicrob. Agents Chemother., 1978, vol. 13, no. 5, pp. 70–83. https://doi.org/10.1128/aac.13.5.770

  20. Abilev, S.K., Kotova, V.Y., Smirnova, S.V., et al., Specific lux biosensors of Escherichia coli containing pRecA::lux, pColD::lux, and pDinI::lux plasmids for detection of genotoxic agents, Russ. J. Genet., 2020, vol. 56, no. 6, pp. 666–673.

    Article  CAS  Google Scholar 

  21. Ganley, B., Chowdhury, G., Bhansali, J., et al., Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide, Bioorg. Med. Chem., 2001, vol. 9, pp. 2395–2401. https://doi.org/10.1016/S0968-0896(01)00163-8

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, G., Li, B., Wang, C., Zhang, H., et al., Systematic and molecular basis of the antibacterial action of quinoxaline 1,4-di-N-oxides against Escherichia coli, PLoS One, 2015, vol. 10, no. 8, p. e0136450. https://doi.org/10.1371/journal.pone.0136450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.B. Zavil’gel’skii and A.V. Manukhov for the E. coli MG1655 (pColD-lux) and E. coli MG1655 (pSoxS-lux) strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sviridova.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sviridova, D.A., Machigov, E.A., Igonina, E.V. et al. Studying the Mechanism of Dioxidine Genotoxicity Using Lux Biosensors of Esсherichia coli. Biol Bull Russ Acad Sci 48, 2174–2180 (2021). https://doi.org/10.1134/S1062359021120098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021120098

Keywords:

Navigation