Skip to main content
Log in

Genes encoding hevein-like antimicrobial peptides WAMPs in the species of the genus Aegilops L.

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Earlier, in the wheat Triticum kiharae Dorof. et Migusch., a new family of genes coding for the hevein-like antimicrobial peptides WAMPs, involved in the protection of wheat plants against pathogens, was discovered. In the present study, we examined the wamp homologs in plants belonging to ten di-, tetra-, and hexaploid species of the genus Aegilops L., among which there are donors of polyploid wheat genomes, as well as of the resistance genes to the most important wheat pathogens. Using PCR amplification with genomic DNA as a template and primers specific to the sequences of the wheat wamp genes, for the first time, nucleotide sequences of the protein-coding regions of wamp homologs were determined in the species of the genus Aegilops L. The wamp homologs were found in all species studied. It was demonstrated that the WAMP peptide precursors encoded by them differed in single nucleotide substitutions, as well as deletions/insertions of amino acid sequences. The most conserved region of the precursor is the mature peptide region, where, in addition to the variable position 34, deletions of amino acid sequences were found in a number of peptides. To elucidate the role of deletions in the antimicrobial activity of WAMPs, a recombinant WAMP-3 peptide with a deletion in the N-terminal region was produced by expression in E. coli cells, and it was shown that antimicrobial activity of the peptide was preserved. It was demonstrated that all the discovered wamp genes were expressed in seedlings of the studied Aegilops species. The results shed new light on the structural diversity of genes encoding the hevein-like antimicrobial peptides WAMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broekaert, W.F., Cammue, B.P.A., De Bolle, M.F.C., et al., Antimicrobial peptides from plants, Crit. Rev. Plant Sci., 1997, vol. 16, no. 3, pp. 297–323.

    Article  CAS  Google Scholar 

  2. Manners, J.M., Hidden weapons of microbial destruction in plant genomes, Genome Biol., 2007, vol. 8, no. 9, pp. 225–234. doi doi 10.1186/gb-2007-8-9-225

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nawrot, R., Barylski, J., Nowicki, G., et al., Plant antimicrobial peptides, Folia Microbiol. (Praha), 2014, vol. 59, no. 3, pp. 181–196. doi 10.1007/s12223-013-0280-4

    Article  CAS  Google Scholar 

  4. Wang, G., Mishra, B., Lau, K., et al., Antimicrobial peptides in 2014, Pharmaceuticals (Basel), 2015, vol. 8, no. 1, pp. 123–150. doi 10.3390/ph8010123

    Article  CAS  Google Scholar 

  5. Tam, J.P., Wang, S., Wong, K.H., and Tan, W.L., Antimicrobial peptides from plants, Pharmaceuticals (Basel), 2015, vol. 8, no. 4, pp. 711–757. doi 10.3390/ph8040711

    Article  CAS  Google Scholar 

  6. Salas, C.E., Badillo-Corona, J.A., Ramírez-Sotelo, G., and Oliver-Salvador, C., Biologically active and antimicrobial peptides from plants, Biomed. Res. Int., 2015, vol. 2015. ID 102129. doi 10.1155/2015/102129

    Google Scholar 

  7. Holaskova, E., Galuszka, P., Frebort, I., and Oz, M.T., Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology, Biotechnol. Adv., 2015, vol. 33, pp. 1005–1023. doi 10.1016/j.biotechadv.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  8. de Souza Cândido, E., de Silva Cardoso, M.H., Sousa, D.A., et al., The use of versatile plant antimicrobial peptides in agribusiness and human health, Peptides, 2014, vol. 55, pp. 65–78. doi 10.1016/j.peptides. 2014.02.003

    Article  PubMed  Google Scholar 

  9. Breen, S., Solomon, P.S., Bedon, F., and Vincent, D., Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance, Front. Plant Sci., 2015, vol. 6, p. 900. doi 10.3389/fpls. 2015.00900

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raikhel, N.V., Lee, H.-I., and Broekaert, W.F., Structure and function of chitin-binding proteins, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, vol. 44, pp. 591–615.

    Article  CAS  Google Scholar 

  11. Van den Bergh, K.P., Rouge, P., Proost, P., et al., Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.), Planta, 2004, vol. 219, pp. 221–232.

    Article  PubMed  Google Scholar 

  12. Slavokhotova, A.A., Naumann, T.A., Price, N.P., et al., Novel mode of action in plant defence peptides: hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases, FEBS J., 2014, vol. 281, no. 20, pp. 4754–4764.

    Article  CAS  PubMed  Google Scholar 

  13. Odintsova, T.I., Vassilevski, A.A., Slavokhotova, A.A., et al., A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif, FEBS J., 2009, vol. 276, no. 15, pp. 4266–4275.

    Article  CAS  PubMed  Google Scholar 

  14. Andreev, Y.A., Korostyleva, T.V., Slavokhotova, A.A., et al., Genes encoding hevein-like defense peptides in wheat: distribution, evolution, and role in stress response, Biochimie, 2012, vol. 94, pp. 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  15. Goncharov, N.P. and Kondratenko, E.Ya., Wheat origin, domestication and evolution, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2008, vol. 12, nos. 1–2, pp. 156–179.

    Google Scholar 

  16. Martynov, S.P., Dobrotvorskaya, T.V., and Mitrofanova, O.P., Genealogical analysis of the use of aegilops (Aegilops L.) genetic material in wheat (Triticum aestivum L.), Russ. J. Genet., 2015, vol. 51, no. 9, pp. 855–862. https://doi.org/10.1134/S1022795-415090070.

    Article  CAS  Google Scholar 

  17. Badaeva, E.D., Amosova, A.V., Muravenko, O.V., et al., Genome differentiation in Aegilops: 3. Evolution of the D-genome cluster, Plant Syst. Evol., 2002, vol. 231, pp. 163–190.

    Article  CAS  Google Scholar 

  18. Utkina, L.L., Zhabon, E.O., Slavokhotova, A.A., et al., Heterologous expression of a synthetic gene encoding a novel hevein-type antimicrobial peptide of Leymus arenarius in Escherichia coli cells, Russ. J. Genet., 2010, vol. 46, no. 12, pp. 1449–1454. https://doi.org/10.1134/S1022795410120070.

    Article  CAS  Google Scholar 

  19. Semina, Yu.V., Shcherbakova, L.A., Slezina, M.P., and Odintsova, T.I., Studying the activity of Chenopodium album seed extracts and Fusarium sambucinum culture liquid against several plant pathogenic fungi, S-kh. Biol., 2016, vol. 51, no. 5, pp. 739–745. doi 10.15389/agrobiology.2016.5.739rus

    Google Scholar 

  20. Zhukovsky, P.M., A critical-systematical survey of the species of the genus Aegilops L., Bull. Appl. Bot. Genet. Plant Breed., 1928, vol. 18, pp. 417–609.

    Google Scholar 

  21. Dubovskii, P.V., Vassilevskii, A.A., Slavokhotova, A.A., et al., Solution structure of a defense peptide from wheat with a 10-cysteine motif, Biochem. Biophys. Res. Commun., 2011, vol. 411, pp. 14–18.

    Article  CAS  PubMed  Google Scholar 

  22. Sax, K. and Sax, H., Chromosome behavior in a genus cross, Genetics, 1924, vol. 9, pp. 454–464.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Odintsova.

Additional information

Original Russian Text © E.A. Istomina, A.A. Slavokhotova, T.V. Korostyleva, Yu.V. Semina, L.A. Shcherbakova, V.A. Pukhalskij, T.I. Odintsova, 2017, published in Genetika, 2017, Vol. 53, No. 12, pp. 1402–1410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istomina, E.A., Slavokhotova, A.A., Korostyleva, T.V. et al. Genes encoding hevein-like antimicrobial peptides WAMPs in the species of the genus Aegilops L.. Russ J Genet 53, 1320–1327 (2017). https://doi.org/10.1134/S1022795417120043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417120043

Keywords

Navigation