Skip to main content
Log in

Polymorphism of genes of the antioxidant system in the development of predispositions to lung cancer

  • Medical Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We analyzed the polymorphic loci in the genes of the antioxidant system enzymes, such as GSTP1 (313A>G and 341C>T), MnSOD (47С>Т), GPx1 (599C>T), and CAT (–262C>>T), among 497 residents of Kemerovo oblast (Western Siberia, Russia). The analysis of the single-locus effects demonstrated a significant protective effect of the major C allele in the GPx1 (599C>T) locus. The MDR analysis of the gene-gene interactions showed that the GPx1 and the CAT genes work in close cooperation and mutually reinforce the risk of development of squamous cell lung cancer among the inhabitants of the industrial region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radziszewska, A., Karczmarek-Borowska, B., Gradalska-Lampart, M., et al., Epidemiology, prevention and risk morbidity factors for lung cancer, Pol. Merkuriusz Lek., 2015, vol. 38, pp. 113–118.

    Google Scholar 

  2. Chung, C.C. and Chanock, S.J., Current status of genome-wide association studies in cancer, Hum. Genet., 2011, vol. 130, pp. 59–78.

    Article  PubMed  Google Scholar 

  3. Autrup, H., Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response, Mutat. Res., 2000, vol. 464, pp. 65–76.

    Article  CAS  PubMed  Google Scholar 

  4. Baranov, V.S., Geneticheskii pasport—osnova individual’noi i prediktivnoi meditsiny (Genetic Passport—The Basis of Individual and Predictive Medicine), Baranov, V.S., Ed., St. Petersburg: N-L, 2009.

  5. Kalinina, E.V., Chernov, N.N., and Novichkova, M.D., The role of glutathione, glutathione transferase, and glutaredoxin in the regulation of redoxdependent processes, Usp. Biol. Khim., 2014, vol. 54, pp. 299–348.

    Google Scholar 

  6. Forsberg, L., Lyrenas, L., de Faire, U., and Morgenstern, R., A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels, Free Radical Biol. Med., 2001, vol. 30, no. 5, pp. 500–505.

    Article  CAS  Google Scholar 

  7. Nadif, R., Mintz, M., Jedlicka, A., et al., Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli, Free Radical Res., 2005, vol. 39, pp. 1345–1350.

    Article  CAS  Google Scholar 

  8. Sobkowiak, A., Lianeri, M., Wudarski, M., et al., Manganese superoxide dismutase Ala-9Val mitochondrial targeting sequence polymorphism in systemic lupus erythematosus in Poland, Clin. Rheumatol., 2008, vol. 27, pp. 827–831.

    Article  PubMed  Google Scholar 

  9. Sutton, A., Imbert, A., Igoudjil, A., et al., The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability, Pharmacogenet. Genomics, 2005, vol. 15, pp. 311–319.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, B.M. and Shim, G.A., Dietary exposure estimation of benzo[a]pyrene and cancer risk assessment, J. Toxicol. Environ. Health, Part A, 2007, vol. 70, nos. 15–16, pp. 1391–1394.

    Article  CAS  Google Scholar 

  11. Ravn-Haren, G., Olsen, A., Tjonneland, A., et al., Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study, Carcinogenesis, 2006, vol. 27, pp. 820–825.

    CAS  Google Scholar 

  12. Hu, Y.J. and Diamond, A.M., Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium, Cancer Res., 2003, vol. 63, pp. 3347–3351.

    CAS  PubMed  Google Scholar 

  13. Rais, R.Kh. and Gulyaeva, L.F., Biologicheskie effekty toksicheskikh soedinenii (Biological Effects of Toxic Compounds), Novosibirsk: Novosibirsk Gos. Univ., 2003.

    Google Scholar 

  14. Watson, M.A., Stewart, R.K., Smith, G.B., et al., Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution, Carcinogenesis, 1998, vol. 19, pp. 275–280.

    Article  CAS  PubMed  Google Scholar 

  15. Karunasinghe, N., Han, D.Y., Goudie, M., et al., Prostate disease risk factors among a New Zealand cohort, J. Nutrigenet. Nutrigenomics, 2012, vol. 5, pp. 339–351.

    Article  CAS  PubMed  Google Scholar 

  16. Ashoura, W., Fathy, M., Hamed, M., et al., Association between environmental tobacco smoke exposure and lung cancer susceptibility: modification by antioxidant enzymes genetic polymorphisms, Egypt. J. Chest Dis. Tuberc., 2013, vol. 62, pp. 781–788.

    Article  Google Scholar 

  17. Moore, J.H., Gilbert, J.C., Tsai, C.T., et al., A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility, J. Theor. Biol., 2006, vol. 241, pp. 252–261.

    PubMed  Google Scholar 

  18. Os’kina, N.A., Ermolenko, N.A., Boyarskikh, U.A., et al., Study of the association of single nucleotide polymorphic substitutions in the genes of antioxidant enzymes with the risk of developing prostate cancer in the Siberian region of Russia, Sib. Onkol. Zh., 2013, no. 3(57).

  19. Bsnescu, C., Trifa, A., Voidszan, S., et al., CAT, GPX1, MnSOD, GSTM1, GSTT1, and GSTP1 genetic polymorphisms in chronic myeloid leukemia: a case-control study, in Oxidative Medicine and Cellular Longevity, 2014, pp. 875–861. doi 10.1155/2014/87586110.1155/2014/875861

    Google Scholar 

  20. Hamanishi, T., Furuta, H., Kato, H., et al., Functional variants in the glutatione peroxidase-1 gene are associated with increased intima—media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients, Diabetes, 2004, vol. 63, pp. 2455–2460.

    Article  Google Scholar 

  21. Mekush, G.E., Economic evaluation of damage to the Kemerovo region economics due to population morbidity, Gorn. Inf.-Anal. Byull., 2011, no. 12, pp. 191–195.

    Google Scholar 

  22. Mun, S.A. and Glushkov, A.N., Prognostic calculation of lung cancer incidence among males in connection with technogenic atmosphere pollution in the Kemerovo region, Gig. Sanit., 2014, no. 2, pp. 37–40.

    Google Scholar 

  23. Skulachev, V.P., Biochemical mechanism of evolution and the role of oxygen, Biochemistry (Moscow), 1998, vol. 63, pp. 1335–1343.

    CAS  Google Scholar 

  24. Velichkovskii, B.T., Free radical oxidation as a link of urgent and long-term adaptation of the organism to environmental factors, Vestn. Ross. Akad. Med. Nauk, 2001, no. 6, pp. 45–52.

    Google Scholar 

  25. Kolesnikova, L.I., Kurashova, N.A., and Grebenkina, L.A., Features of lipid peroxidation and antioxidant protection in healthy men, Vestn. Voenno-Med. Akad., 2012, vol. 3, pp. 134–137.

    Google Scholar 

  26. Halliwell, B.B. and Gutteridge, M.C.J., Free Radicals in Biology and Medicine, Oxford: Oxford Univ. Press,2007, 4th ed.

    Google Scholar 

  27. Liu, G., Zhou, W., Wang, L.I., et al., MPO and SOD2 polymorphisms, gender, and the risk of non-small cell lung carcinoma, Cancer Lett., 2004, vol. 214, pp. 69–79.

    CAS  PubMed  Google Scholar 

  28. Crawford, A., Fassett, R.G., Geraghty, D.P., et al., Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease, Gene, 2012, vol. 501, pp. 89–103.

    Article  CAS  PubMed  Google Scholar 

  29. Miller, D.P., Liu, G., De Vivo, I., et al., Combinations of the variant genotypes of GSTP1,GSTM1,and p53 are associated with an increased lung cancer risk, Cancer Res., 2002, vol. 62, no. 15, pp. 2819–2823.

    CAS  PubMed  Google Scholar 

  30. Zhao, Y., Zeng, J., Zhang, Y., et al., GSTM1 polymorphism and lung cancer risk among East Asian populations: a meta-analysis, Tumor Biol., 2014, vol. 35, pp. 6493–6500.

    Article  CAS  Google Scholar 

  31. Cote, M.L., Chen, W., Smith, D.W., et al., Meta-and pooled analysis of GSTP1 polymorphism and lung cancer: a HuGE-GSEC review, Am. J. Epidemiol., 2009, vol. 169, pp. 802–814.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cebrian, A., Pharoah, P.D., Ahmed, S., et al., Tagging single-nucleotide polymorphisms in antioxidant defense enzymes and susceptibility to breast cancer, Cancer Res., 2006, vol. 66, pp. 1225–1233.

    Article  CAS  PubMed  Google Scholar 

  33. Udler, M., Maia, A.T., Cebrian, A., et al., Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer, J. Clin. Oncol., 2007, vol. 25, pp. 3015–3023.

    Article  CAS  PubMed  Google Scholar 

  34. Arsova-Sarafinovska, Z., Matevska, N., Eken, A., et al., Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk, Int. Urol. Nephrol., 2009, vol. 41, no. 1, pp. 63–70.

    CAS  Google Scholar 

  35. Ratnasinghe, D., Tangrea, J.A., Andersen, M.R., et al., Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk, Cancer Res., 2000, vol. 60, pp. 6381–6383.

    CAS  PubMed  Google Scholar 

  36. Yang, P., Bamlet, W.R., Ebbert, J.O., et al., Glutathione pathway genes and lung cancer risk in young and old populations, Carcinogenesis, 2004, vol. 25, pp. 1935–1944.

    Article  CAS  PubMed  Google Scholar 

  37. Raaschou-Nielsen, O., Sorensen, M., Hansen, R.D., et al., GPX1 Pro198Leu polymorphism, interactions with smoking and alcohol consumption, and risk for lung cancer, Cancer Lett., 2007, vol. 247, no. 2, pp. 293–300.

    CAS  PubMed  Google Scholar 

  38. Rosenberger, A., Illig, T., Korb, K., et al., Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years, BMC Cancer, 2008, vol. 8, p. 60.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kucukgergin, C., Isman, F.K., Cakmakoglu, B., et al., Association of polymorphisms in MCP-1,CCR2,and CCR5 genes with the risk and clinicopathological characteristics of prostate cancer, DNA Cell Biol., 2012, vol. 31, no. 8, pp. 1418–1424.

    Article  CAS  PubMed  Google Scholar 

  40. Miar, A., Hevia, D., Cimadevilla, H., et al., Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer, Free Radical Biol. Med., 2015, vol. 85, pp. 45–55.

    Article  CAS  Google Scholar 

  41. Majolo, F., Paludo, F., Ponzoni, A., et al., Effect of 593C>T GPx1 SNP alone and in synergy with 47C>T SOD2 SNP on the outcome of critically ill patients, Cytokine, 2015, vol. 71, pp. 312–317.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Titov.

Additional information

Original Russian Text © R.A. Titov, V.I. Minina, O.A. Soboleva, A.V. Ryzhkova, Yu.E. Kulemin, E.N. Voronina, 2017, published in Genetika, 2017, Vol. 53, No. 8, pp. 952–959.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titov, R.A., Minina, V.I., Soboleva, O.A. et al. Polymorphism of genes of the antioxidant system in the development of predispositions to lung cancer. Russ J Genet 53, 903–909 (2017). https://doi.org/10.1134/S1022795417080117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417080117

Keywords

Navigation