Skip to main content
Log in

AFLP, RAPD, and ISSR analysis of intraspecific polymorphism and interspecific differences of allotetraploid species Aegilops kotschyi Boiss. and Aegilops variabilis Eig

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

To evaluate genetic variation, 27 accessions of allotetraploid species Aegilops kotschyi and Ae. variabilis with the US genome were analyzed using the AFLP, RAPD, and ISSR methods. A total of 316 polymorphic RAPD fragments, 750 polymorphic AFLP fragments, and 234 polymorphic ISSR fragments were obtained. It was demonstrated that the analyzed species were characterized by a considerable level of nuclear genome variation. According to the data of ISSR and RAPD analysis, the average value of the Jaccard similarity coefficient for the accessions of Ae. variabilis from different geographical regions was slightly lower than that for the accessions of Ae. kotschyi. At the same time, AFLP analysis showed no considerable differences in the levels of intraspecific variation of the studied species. Analysis of the summarized RAPD, ISSR, and AFLP marking data in the Structure software program showed that most of the analyzed accessions with high degree of probability could be assigned to one of two groups, the first of which corresponded to Ae. kotschyi and the second corresponded to Ae. variabilis, thereby confirming the species independence of Ae. kotschyi and Ae. variabilis. Accessions k900, k907, k908, and v90 could not with a sufficiently high degree of probability be assigned to one of the species, which possibly was the result of interspecific hybridization. Analysis of the species diversity using different molecular markers made it possible to identify the accessions that were notably different from other accessions of its species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, K.L. and Wendel, J.F, Polyploidy and genome evolution in plants, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 135–141.

    Article  CAS  PubMed  Google Scholar 

  2. Jiao, Y., Wickett, N.J., Ayyampalayam, S., et al., Ancestral polyploidy in seed plants and angiosperms, Nature, 2011, vol. 473, pp. 97–100. doi 10.1038/nature09916

    Article  CAS  PubMed  Google Scholar 

  3. Soltis, P.S. and Soltis, D.E, Ancient WGD events as drivers of key innovations in angiosperms, Curr. Opin. Plant Biol., 2016, vol. 30, pp. 159–165. doi 10.1016/j.pbi.2016.03.015

    Article  PubMed  Google Scholar 

  4. Kihara, H, Verwandtschaft der Aegilops Arten im Lichte der Genomanalyse, Züchter, 1940, vol. 12, pp. 49–62.

    Google Scholar 

  5. Kihara, H, Genomanalyse bei Triticum und Aegilops: 9. Systematischer Aufbau der Gattung Aegilops auf genom-analytischer Grundlage, Cytologia, 1949, vol. 14, pp. 135–144.

    Article  Google Scholar 

  6. Kihara, H, Considerations on the evolution and distribution of Aegilops species based on the analyzer method, Cytologia, 1954, vol. 19, pp. 336–357.

    Article  Google Scholar 

  7. Tanaka, M, Chromosome pairing in hybrids between Aegilops sharonensis and some species of Aegilops and Triticum, Wheat Inf. Serv., 1955, vol. 2, pp. 7–8.

    Google Scholar 

  8. Chennaveeraiah, M.S, Karyomorphologic and cytotaxonomic studies in Aegilops, Acta Horti Gotob., 1960, vol. 23, pp. 85–186.

    Google Scholar 

  9. Dubcovsky, J. and Dvorak, J, Genome origin of Triticum cylindricum, Triticum triunciale, and Triticum ventricosum (Poaceae) inferred from variation in repeated nucleotide sequences: a methodological study, Am. J. Bot., 1994, vol. 81, pp. 1327–1335.

    Google Scholar 

  10. Badaeva, E.D., Amosova, A.V., Samatadze, T.E., et al., Genome differentiation in Aegilops: 4. Evolution of the U-genome cluster, Plant Syst. Evol., 2004, vol. 246, pp. 45–76.

    Article  CAS  Google Scholar 

  11. Kimber, G. and Feldman, M., Wild Wheat, an Introduction: Special Report 353, College Agriculture, Univ. Missouri, Columbia, 1987.

    Google Scholar 

  12. van Slageren, M.W., Wild Wheats: A Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach.) Eig (Poaceae), Wageningen: Wageningen Agric. Univ, 1994.

    Google Scholar 

  13. Zohary, D. and Feldman, M, Hybridization between amphiploids and the evolution of polyploids in the wheat (Aegilops–Triticum) group, Evolution, 1962, vol. 16, pp. 44–61.

    Article  Google Scholar 

  14. Hammer, K, Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L., Kulturpflanze, 1980, vol. 28, pp. 33–180.

    Article  Google Scholar 

  15. Witcombe, J.R., A Guide to the Species of Aegilops L.: Their Taxonomy, Morphology, and Distribution, Rome: International Board for Plant Genetic Resources, 1983.

    Google Scholar 

  16. Bowden, W.M, The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives, Can. J. Bot., 1959, vol. 37, pp. 130–136.

    Google Scholar 

  17. Kimber, G. and Sears, E.R., Evolution in the genus Triticum and the origin of cultivated wheat, in Wheat and Wheat Improvement, Madison, WI: American Society of Agronomy, 1987, 2nd ed., pp. 154–164.

  18. Waines, J.G. and Barnhart, D, Biosystematic research in Aegilops and Triticum, Hereditas, 1992, vol. 116, pp. 207–212.

    Article  Google Scholar 

  19. Zhang, H.-B., Dvorak, J., and Waines, J.G, Diploid ancestry and evolution of Triticum kotschyi and T. peregrinum examined using variation in repeated nucleotide sequences, Genome, 1992, vol. 35, pp. 182–191.

    Article  CAS  Google Scholar 

  20. Goryunova, S.V., Chikida, N.N., and Kochieva, E.Z., RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome, Russ. J. Genet., 2010, vol. 46, no. 7, pp. 841–854. doi 10.1134/S1022795410070094

    Article  CAS  Google Scholar 

  21. Edwards, K., Johnstone, C., and Thompson, C., A simple and rapid method for the preparation of plant genomic DNA for PCR analysis, Nucleic Acids Res., 1991, vol. 19, no. 6, p. 1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vos, P., Hogers, R., Bleeker, M., et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 1995, vol. 23, pp. 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smulders, M.J.M., Schoot, J., Geerts, R.H.E.M., et al., Genetic diversity and reintroduction of meadow species, Plant Biol., 2000, vol. 2, pp. 447–454.

    Article  Google Scholar 

  24. Kochieva, E.Z., Ryzhova, N.N., Khrapalova, I.A., and Pukhalskyi, V.A, Genetic diversity and phylogenetic relationships in the genus Lycopersicon (Tourn.) Mill. as revealed by inter-simple sequence repeat (ISSR) analysis, Russ. J. Genet., 2002, vol. 38, no. 8, pp. 958–966. doi 10.1023/A:1016896013986

    Article  CAS  Google Scholar 

  25. Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, pp. 1–9.

    Google Scholar 

  26. Pritchard, J.K., Stephens, M., and Donnelly, P, Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eig, A., Monographisch-kritische Übersicht der Gattung Aegilops, Repert. Spec. Nov. Regni Veg. Beith., 1929, vol. 55, pp. 1–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Goryunova.

Additional information

Original Russian Text © S.V. Goryunova, N.N. Chikida, E.Z. Kochieva, 2017, published in Genetika, 2017, Vol. 53, No. 5, pp. 570–578.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryunova, S.V., Chikida, N.N. & Kochieva, E.Z. AFLP, RAPD, and ISSR analysis of intraspecific polymorphism and interspecific differences of allotetraploid species Aegilops kotschyi Boiss. and Aegilops variabilis Eig. Russ J Genet 53, 568–575 (2017). https://doi.org/10.1134/S1022795417050040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417050040

Keywords

Navigation