Skip to main content
Log in

Forms of natural selection controlling the genomic evolution in nodule bacteria

  • Review and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The role of different forms of natural selection in the evolution of genomes in root nodule bacteria (rhizobia) is analyzed for the first time. In these nitrogen-fixing symbionts of leguminous plants, two types of genome organization are revealed: (i) unitary type, where over 95% of genetic information is encoded by chromosomes (5.3–5.5 Mb in Azorhizobium, 7.0–7.8 Mb in Mesorhizobium, 7.3–10.1 Mb in Bradyrhizobium); (ii) multipartite type, where up to 50% of genetic information is allocated to plasmids or chromids which may exceed 2 Mb in size and usually control the symbiotic properties (pSyms) in fast-growing rhizobia (Rhizobium, Sinorhizobium, Neorhizobium). Emergence of fast-growing species with narrow host ranges are correlated to the extension of extrachromosomal parts of genomes, including the increase in pSyms sizes (in Sinorhizobium). An important role in this evolution is implemented by diversifying selection since the genomic diversity evolved in rhizobia owing to symbiotic interactions with highly divergent legumes. However, analysis of polymorphism in nod genes (encoding synthesis of lipo-chitooligosaccharide signaling Nod factors) suggests that the impacts of diversifying selection are restricted to the bacterial divergence for host specificity and do not influence the overall genome organization. Since the extension of rhizobia genome diversity results from the horizontal sym gene transfer occurring with low frequencies, we suggest that this extension is due to the frequency-dependent selection anchoring the rare genotypes in bacterial populations. It is implemented during the rhizobia competition for nodulation encoded by the functionally diverse cmp genes. Their location in different parts of bacterial genomes may be considered as an important factor of their adaptive diversification implemented in the host-associated microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Evolutionary Genetics of Plant–Microbe Symbiosis), Tikhonovich, I.A., Ed., St. Petersburg: Inform-Navigator, 2012.

    Google Scholar 

  2. Berrada, H. and Fikri-Benbrahim, K., Taxonomy of the rhizobia: current perspectives, Br. Microbiol. Res. J., 2014, vol. 4, no. 6, pp. 616–639.

    Article  Google Scholar 

  3. Provorov, N.A. and Andronov, E.E., Evolution of root nodule bacteria: reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system, Microbiology (Moscow), 2016, vol. 85, no. 2, pp. 132–139. doi 10.1134/S0026261716020156

    Article  Google Scholar 

  4. Hirsch, A.M., Lum, M.R., and Downie, J.A., What makes the rhizobia–legume symbiosis so special?, Plant Physiol., 2001, vol. 127, pp. 1484–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson, M.L. and Berryhill, D.L., Plasmid diversity in North Dakota strains of Rhizobium phaseoli, the symbiotic dinitrogen-fixing bacterium of beans, Proc. North Dakota Acad. Sci., 1986, vol. 40, p. 15.

    Google Scholar 

  6. Guo, H., Sun, S., Eardly, D., et al., Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti, Genome, 2009, vol. 52, no. 10, pp. 862–875.

    Article  CAS  PubMed  Google Scholar 

  7. Guo, X., Flores, M., Mavingui, P., et al., Natural genomic design in Sinorhizobium meliloti: novel genomic architectures, Genome Res., 2003, vol. 13, pp. 1810–1817.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazur, A., Stasiak, G., Wielbo, J., et al., Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates, BMC Microbiol., 2011, vol. 11.123. doi 10.1186/1471-2180-11-123

    Google Scholar 

  9. Okazaki, S., Noisangiam, R., Okubo, T., et al., Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid, PLoS One, 2015, vol. 10, no. 2. e0117392

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sullivan, J.T. and Ronson, C.W., Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into phe-tRNA gene, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 5145–5149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young, J.P.W., Crossman, L.C., Johnston, A.W.B., et al., The genome of Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol., 2006, vol. 7, no. 4, p. R34.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wisniewski-Dyé, F., Lozano, L., Acosta-Cruz, E., et al., Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation, Genes, 2012, vol. 3, no. 4, pp. 576–602.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Black, M., Moolhuijzen, P., Chapman, B., et al., The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters, Genes, 2012, vol. 3, no. 2, pp. 138–166.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andronov, E.E., Onishchuk, O.P., Kurchak, O.N., and Provorov, N.A., Population structure of the clover rhizobia Rhizobium leguminosarum bv. trifolii upon transition from soil into the nodular niche, Microbiology (Moscow), 2014, vol. 83, no. 4, pp. 422–429. doi 10.1134/S0026261714030035

    Article  CAS  Google Scholar 

  15. Andronov, E.E., Igolkina, A.A., Kimeklis, A.K., et al., Characteristics of natural selection in populations of nodule bacteria (Rhizobium leguminosarum) interacting with different host plants, Russ. J. Genet., 2015, vol. 51, no. 10, pp. 949–956. doi 10.1134/S1022795415100026

    Article  CAS  Google Scholar 

  16. Provorov, N.A., Andronov, E.E., Onishchuk, O.P., et al., Genetic structure of the introduced and local populations of Rhizobioum leguminosarum in plant–soil systems, Microbiology (Moscow), 2012, vol. 81, no. 2, pp. 224–232. doi 10.1134/S0026261712020129

    Article  CAS  Google Scholar 

  17. Trotter, M.V. and Spencer, H.G., Frequency-dependent selection and the maintenance of genetic variation: exploring the parameter space of the multiallelic pairwise interaction model, Genetics, 2007, vol. 176, no. 3, pp. 1729–1740.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Friesen, M.L., Saxer, G., Travisano, M., and Doeveli, M., Experimental evidence for sympartric ecological diversification due to frequency-dependent competition in Escherichia coli, Evolution, 2004, vol. 58, no. 2, pp. 245–260.

    Article  PubMed  Google Scholar 

  19. Tikhonovich, I.A., Kozhemyakov, A.P., Ovtsyna, A.O., and Provorov, N.A., Construction of highly efficient symbiotic systems, in New Approaches and Techniques in Breeding Sustainable Fodder Crops and Amenity Grasses, S.-Petersburg: All-Russia Research Institute of Plant Industry, 2000, pp. 131–135.

    Google Scholar 

  20. Rocha, E.P.C., Maynard Smith, J., Hurst, L.D., et al., Comparisons of dN/dS are time dependent for closely related bacterial genomes, J. Theor. Biol., 2006, vol. 239, pp. 226–235.

    Article  CAS  PubMed  Google Scholar 

  21. Gladieux, P., Devier, B., Aguileta, G., et al., Purifying selection after episodes of recurrent adaptive diversification in fungal pathogens, Infect. Genet. Evol., 2013, vol. 17, pp. 123–131.

    Article  PubMed  Google Scholar 

  22. Nystedt, B., Frank, A.C., Thollesson, M., and Andersson, S.G., Diversifying selection and concerted evolution of a type IV secretion system in Bartonella, Mol. Biol. Evol., 2008, vol. 25, no. 2, pp. 287–300.

    Article  CAS  PubMed  Google Scholar 

  23. Cervantes, L., Bustos, P., Girard, L., et al., The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain, BMC Microbiol., 2011, vol. 11, p. 149. doi 10.1186/1471-2180-11-149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Provorov, N.A. and Vorob’ev, N.I., Population genetics of nodule bacteria: simulation of cyclic processes in bacterial–plant systems, Russ. J. Genet., 1998, vol. 34, no. 12, pp. 1455–1461.

    CAS  Google Scholar 

  25. Thompson, J.N. and Burdon, J., Gene-for-gene coevolution between plants and parasites, Nature, 1992, vol. 360, pp. 121–125.

    Article  Google Scholar 

  26. Vorob’ev, N.I. and Provorov, N.A., The quorum sensing and the nodulation competitiveness of rhizobia during infection of leguminous plants, S-kh. Biol., 2015, no. 3, pp. 298–304.

    Google Scholar 

  27. Provorov, N.A. and Vorobyev, N.I., Microevolution of nodule bacteria upon generation of mutants with altered survival in the plant–soil system, Russ. J. Genet., 2003, vol. 39, no. 12, pp. 1349–1359. doi 10.1023/B:RUGE.0000009147.28398.90

    Article  CAS  Google Scholar 

  28. Triplett, E.W. and Sadowsky, M.J., Genetics of competition for nodulation of legumes, Annu. Rev. Microbiol., 1992, vol. 46, pp. 399–428.

    Article  CAS  PubMed  Google Scholar 

  29. Onishchuk, O.P. and Simarov, B.V., Genes controlling nodulation competitiveness of nodule bacteria, Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1001–1010.

    CAS  Google Scholar 

  30. Pobigaylo, N., Szymczak, S., Nattkemper, T.W., and Becker, A., Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants, Mol. Plant–Microbe Interact., 2008, vol. 21, no. 2, pp. 219–231.

    Article  CAS  PubMed  Google Scholar 

  31. Onishchuk, O.P., Sharypova, L.A., and Simarov, B.V., Isolation and characterization of the Rhizobium meliloti Tn5-mutants with impaired nodulation competitiveness, Plant Soil, 1994, vol. 197, pp. 267–274.

    Article  Google Scholar 

  32. Merezhkovskii, K.S., Teoriya dvukh plazm kak osnova simbiogenezisa, novogo ucheniya o proiskhozhdenii organizmov (The Theory of Two Plasms as the Basis of Symbiogenesis, a New Study on the Origins of Organisms), Kazan: Imp. Univ., 1909.

    Google Scholar 

  33. Margulis, L. and Sagan, D., Acquiring Genomes: A Theory of the Origins of Species, New York: Basic Books, 2002.

    Google Scholar 

  34. Margulis, L., Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, San Francisco: Freeman, 1981.

    Google Scholar 

  35. Frank, S.A., Genetics of mutualism: the evolution of altruism between species, J. Theor. Biol., 1994, vol. 170, pp. 393–400.

    Article  CAS  PubMed  Google Scholar 

  36. Provorov, N.A. and Vorobyev, N.I., Evolution of hostbeneficial traits in nitrogen-fixing bacteria: modeling and construction of systems for interspecies altruism, Appl. Biochem. Microbiol. (Dordrecht), 2015, vol. 51, no. 4, pp. 381–387.

    Article  CAS  Google Scholar 

  37. van der Giezen, M. and Tovar, J., Degenerate mitochondria, EMBO Rep., 2005, vol. 6, pp. 525–530.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Udvardi, M.K. and Kahn, M.L., Evolution of the (Brady)Rhizobium–legume symbiosis: why do bacteroids fix nitrogen?, Symbiosis, 1993, vol. 14, pp. 87–101.

    Google Scholar 

  39. Udvardi, M. and Poole, P.S., Transport and metabolism in legume–rhizobia symbioses, Annu. Rev. Plant Biol., 2013, vol. 64, pp. 201–225.

    Article  Google Scholar 

  40. Ran, L., Larsson, J., Vigil-Stenman, T., et al., Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium, PLoS One, 2010, vol. 5, no. 7. e11486

    Article  PubMed  PubMed Central  Google Scholar 

  41. Österman, J., Marsh, J., Laine, P.K., et al., Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors, BMC Genomics, 2014. 15:500. doi 10.1186/1471-2164-15-500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © N.A. Provorov, E.E. Andronov, O.P. Onishchuk, 2017, published in Genetika, 2017, Vol. 53, No. 4, pp. 401–410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provorov, N.A., Andronov, E.E. & Onishchuk, O.P. Forms of natural selection controlling the genomic evolution in nodule bacteria. Russ J Genet 53, 411–419 (2017). https://doi.org/10.1134/S1022795417040123

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417040123

Keywords

Navigation