Skip to main content
Log in

Evolutionary Geography of Root Nodule Bacteria: Speciation Directed by the Host Plants

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Compared to free-living relatives, bacterial symbionts of plants exhibit higher rates of population diversification (microevolution), as well as of speciation and formation of super-species taxa (macroevolution). Analysis of rhizobia, the N2-fixing symbionts of leguminous plants, suggests that both evolutionary modes are determined by the hosts, which have mutagenic and recombinogenic effects on their microsymbionts, apart from activating the selective processes that determine the fate of newly emerged genotypes in their populations. Migration induced by leguminous plants plays a key role in the evolution of rhizobia, including: (1) joint movement of the symbionts and their hosts into new ecological zones and (2) local circulation of the symbionts in plant‒soil systems. In the first case, allopatric speciation occurs in rhizobia due to transfer of the symbiotically specialized (sym) genes from the introduced strains into local bacteria, which are transformed into novel symbionts. In the second case, a sympatric divergence of Rhizobium populations occurs, resulting in formation of intraspecies taxa (biovars and symbiovars) contrasting in their host ranges. In the evolutionarily advanced rhizobia, Rhizobium leguminosarum and Neorhizobium galegae interacting with galegoid legumes (tribes Fabeae, Galegae, and Trifolieae), these processes are associated with diversification of the sym genes representing the accessory genome parts due to the interaction between bacteria and the hosts differing in their symbiotic affinities. In parallel, formation of new cryptic (genomic) species was revealed in local rhizobia populations, which is associated with divergence of the core genome parts. It may be caused either by genetic drift or by selection for resistance against local edaphic stresses, which in combination with disruptive selection can sufficiently enhance the rhizobia diversity and change the structures of their pangenomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aguilar, O.M., Riva, O., and Peltzer, E., Analysis of Rhizobium etli and its symbiosis with Phaseolus vulgaris supports coevolution in centers of host diversification, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 13548‒13553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aksenova, T.S., Chirak, E.R., Onishchuk, O.P., Kurchak, O.N., Igolkina, A.A., Pinaev A.G., Andronov, E.E., and Provorov, N.A., Population polymorphism of Nod-factor synthesis genes in clover rhizobia (Rhizobium leguminosarum bv. trifolii) from ecosystems contrasting in climatic conditions and accessibility of host plants, Rus. J. Genet.: Appl. Res., 2019 (in press).

  3. Allen, O.N. and Allen, E.K., The Leguminosae. A Source Book of Characteristics, Uses and Nodulation, Madison: Wisconsin Univ. Press, 1981.

    Google Scholar 

  4. Amarger, N., Bours, M., Revoy, F., Allard, M.R., and Laguerre G., Rhizobium tropici nodulates field-growing Phaseolus vulgaris in France, Plant Soil, 1994, vol. 161, pp. 147‒156.

    Article  CAS  Google Scholar 

  5. Andrews, M., De Meyer, S., James, E.K., Stępkowski, T., and Hodge, S., Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance, Genes (Basel), 2018, vol. 9, no. 7, pp. 321‒331.

    Article  PubMed Central  CAS  Google Scholar 

  6. Andronov, E.E., Igolkina, A.A., Kimeklis, A.K., Vorobyov, N.I., and Provorov, N.A., Characteristics of natural selection in populations of nodule bacteria (Rhizobium leguminosarum) interacting with different host plants, Rus. J. Genet., 2015, vol. 51, pp. 949–956.

    Article  CAS  Google Scholar 

  7. Bailly, X., Olivieri, I., De Mita, S., Cleyet-Marel, J.-C., and Bena, G., Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago,Mol. Ecol., 2006, vol. 15, pp. 2719–2734.

    Article  CAS  PubMed  Google Scholar 

  8. Bassam, B.J., Mahanty, H.K., and Gresshoff, P.M., Symbiotic interaction of auxotrophic mutants of Rhizobium trifolii with white clover (Trifolium repens), Endocyt. C. Res., 1987, vol. 4, pp. 331‒347.

    Google Scholar 

  9. Bena, G., Lyet, A., Huguet, T., and Olivieri, I., Medicago–Sinorhizobium symbiotic specificity evolution and the geographic expansion of Medicago,J. Evol. Biol., 2005, vol. 18, pp. 1547‒1558.

    Article  CAS  PubMed  Google Scholar 

  10. Bernal, G. and Graham, P.H., Diversity on the rhizobia associated with Phaseolus vulraris L. in Ecuador, the comparison with Mexican bean rhizobia, Can. J. Microbiol., 2001, vol. 47, pp. 526‒534.

    Article  CAS  PubMed  Google Scholar 

  11. Berrada, H. and Fikri-Benbrahim, K., Taxonomy of the rhizobia: current perspectives, British Microbiol. Res. J., 2014, vol. 4, pp. 616‒639.

    Article  Google Scholar 

  12. Brom, S., Girard, L., Garcia-de los Santos, A., Sanjuan-Pinilla, J.M., Olivares, J., and Sanjuan, J., Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2555‒2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Broughton, W.J., Samrey, U., and Stanley, J., Ecological genetics of Rhizobium meliloti: symbiotic plasmid transfer in the Medicago sativa rhizosphere, FEMS Microbiol. Lett., 1987, vol. 40, pp. 251‒255.

    Article  CAS  Google Scholar 

  14. Chen, L.A., Figueredo, A., Pedrosa, F.O., and Hungria, M., Genetic characterization of soybean rhizobia in Paraguay, Appl. Environ. Microbiol., 2000, vol. 66, pp. 5099‒5103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chernova, T.A., Aronshtam, A.A., and Simarov, B.V., Genetic nature of Rhizobium meliloti nonvirulent mutants CXM1-125 and CXM1-126, Genetika, 1986, vol. 22, no. 8, pp. 2066‒2073.

    CAS  Google Scholar 

  16. Chirak, E.R., Kopat, V.V., Kimeklis, A.K., Safronova, V.I., Belimov, A.A., Chirak, E.L., Tupikin, A.E., Andronov, E.E., and Provorov N.A., Structural and functional organization of the plasmid regulons of Rhizobium leguminosarum symbiotic genes, Microbiology (Moscow), 2016, vol. 85, pp. 708–716.

    Article  CAS  Google Scholar 

  17. Devine, T.E. and Kuykendall, L.D., Host genetic control of symbiosis in soybean (Glycine max L.), Plant Soil, 1996, vol. 186, pp. 173‒187.

    Article  CAS  Google Scholar 

  18. Eardly, B.D., Wang, F.-S., Whittam, T.S., and Selander, R.K., Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris), Appl. Environ. Microbiol., 1995, vol. 61, pp. 507‒512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Filipcenko, J., Variabilität und Variation, Berlin: Bornträger, 1927.

    Google Scholar 

  20. Jones, J.D. and Dangl, J.L., The plant immune system, Nature, 2006, vol. 444, pp. 323‒329.

    Article  CAS  PubMed  Google Scholar 

  21. Karasev, E.S., Andronov, E.E., Aksenova, T.S., Chizhevskaya, E.P., Tupikin, A.E., and Provorov, N.A., Evolution of goat’s rue rhizobia (Neorhizobium galegae): analysis of polymorphism of the nitrogen fixation and nodule formation genes, Rus. J. Genet. 2019, vol. 55, pp. 263‒266.

    Article  CAS  Google Scholar 

  22. Kimeklis, A.K., Kuznetsova, I.G., Sazanova, A.L., Safronova, V.I., Belimov, A.A., Onishchuk, O.P., Kurchak, O.N., Aksenova, T.S., Pinaev, A.G., Musaev, A.M., Andronov, E.E., and Provorov, N.A., The divergent evolution of symbiotic bacteria: the rhizobia of the relic legume Vavilovia formosa form an isolated group within the species Rhizobium leguminosarum bv. viciae,Rus. J. Genet., 2018, vol. 54, pp. 866‒870.

    Article  CAS  Google Scholar 

  23. Kopat, V.V., Chirak, E.R., Kimeklis, A.K., Safronova, V.I., Belimov, A.A., Kabilov, M.R., Andronov, E.E., and Provorov, N.A., Evolution of fixNOQP genes encoding cytochrome oxidase with high affinity to oxygen in rhizobia and related bacteria, Rus. J. Genet., 2017, vol. 53, pp. 766–774.

    Article  CAS  Google Scholar 

  24. Krasil’nikov, N.A. and Melkumova, T.A., Variability of root nodule bacteria inside the nodules of legumes, Izv. AN SSSR, Ser. Biol., 1963, no. 5, pp. 693‒706.

  25. Kumar, N., Lad, G., Giuntini, E., Kaye, M.E., Udomwong, P., Shamsani, N.J., Young, J.P.W., and Bailly, X. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum,Open Biol., 2015. 5:140133.https://doi.org/10.1098/rsob.140133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laguerre, G., Geniaux, E., Mazurier, S.I., Rodrigues, C.R., and Amarger, N., Conformity and diversity among field isolates of Rhizobium leguminosarum bv. viciae, bv. trifolii and bv. phaseoli revealed by DNA hybridization using chromosome and plasmid probes, Can. J. Microbiol., 1993, vol. 39, pp. 412‒419.

    Article  CAS  Google Scholar 

  27. Laguerre, G., Lauvrier, P., Allard, M.R., and Amarger, N., Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes, Appl. Environ. Microbiol., 2003, vol. 69, pp. 2276‒2283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laguerre, G., Nour, S.M., Macheret, V., Sanjuan, J., Drouin, P., and Amarger, N., Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts, Microbiology (SGM), 2001, vol. 147, pp. 981‒993.

    Article  CAS  PubMed  Google Scholar 

  29. Lie, T.A., Göktan, D., Engin, M., Pijnenborg, J., and Anlarsal, E., Co-evolution of the legume-Rhizobium association, Plant Soil, 1987, vol. 100, pp. 171‒181.

    Article  Google Scholar 

  30. Litchman, E., Invasive invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems, Ecology Lett., 2010, vol. 13, pp. 1560‒1572.

    Article  Google Scholar 

  31. Mayr, E., Populations, Species, and Evolution, Cambridge: Belknap, 1970.

    Google Scholar 

  32. Mikič, A., Smýkal, P., Kenicer, G., Vishnyakova, M., Sarukhanyan, N., Akopian, J., Vanyan, A., Gabrielyan, I., Smýkalová, I., and Sherbakova, E., The bicentenary of the research on ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential, Bot. J. Linn. Soc., 2013, vol. 172, pp. 524–531.

    Article  Google Scholar 

  33. Minamisawa, K., Itakura, M., Suzuki, M., Ichige, K., Isawa, T., Yuhashi, K., and Mitsui, H., Horizontal transfer of nodulation genes in soils and microcosms from Bradyrhizobium japonicum to B. elkanii,Microbes Environ., 2002, vol. 17, pp. 82‒90.

    Article  Google Scholar 

  34. Mornico, D., Miché, L., Béna, G., Nouwen, N., Verméglio, A., Vallenet, D., Smith, A.T., Giraud, E., Médigue, C., and Moulin, L., Comparative genomics of Aeschynomene symbionts: insights into the ecological lifestyle of nod-independent photosynthetic bradyrhizobia, Genes, 2012, vol. 3, pp. 35‒61.

    Article  CAS  Google Scholar 

  35. Moulin, L., Béna, G., Boivin-Masson, C., and Stepkowski, T., Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus, Mol. Phylogenet. Evol., 2004, vol. 30, pp. 720‒732.

    Article  CAS  PubMed  Google Scholar 

  36. Mousavi, S.A., Österman, J., Wahlberg, N., Nesme, X., Lavire, C., Vial, L., Paulin, L., de Lajudie, P., and Lindström, K., Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov., Syst. Appl. Microbiol., 2014, vol. 37, pp. 208–215.

    Article  CAS  PubMed  Google Scholar 

  37. Mutch, L.A. and Young J.P.W., Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes, Mol. Ecol., 2004, vol. 13, pp. 2435‒2444.

    Article  CAS  PubMed  Google Scholar 

  38. Nandasena, K.G., O’Hara, G.W., Tiwari, R.P., and Howieson, J.G., Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant, Appl. Environ. Microbiol., 2006, vol. 72, pp. 7365‒7367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oda, Y., Larimer, F.W., Chain, P.S., Malfatti, S., Shin, M.V., Vergez, L.M., Hauser, L., Land, M.L., Braatsch, S., Beatty, J.T., Pelletier, D.A., Schaefer, A.L., and Harwood, C.S., Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 18543‒18548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okazaki, S., Noisangiam, R., Okubo, T., Kaneko, T., Oshima, K., Hattori, M., Teamtisong, K., Songwattana, P., Tittabutr, P., Boonkerd, N., Saeki, K., Sato, S., Uchiumi, T., Minamisawa, K., and Teaumroong, N., Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid, PLoS One, 2015, vol. 10. e0117392. https://doi.org/10.1371/journal.pone.0117392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pretorius-Güth, I.M., Pühler, A., and Simon, R., Conjugal transfer of megaplasmid 2 between Rhizobium meliloti strains in alfalfa nodules, Appl. Environ. Microbiol., 1990, vol. 56, pp. 2354‒2359.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Provorov, N.A. and Andronov, E.E. Evolution of root nodule bacteria: reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system, Microbiology (Moscow). 2016, vol. 85, pp. 131–139.

    Article  CAS  Google Scholar 

  43. Provorov, N.A. and Onishchuk, O.P., Evolutionary-genetic bases for symbiotic engineering in plants, Agric. Biol., 2018, vol. 53, pp. 464‒474.

    Google Scholar 

  44. Provorov, N.A. and Vorobyov, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Genetic Basis of the Evolution of a Plant-Microbial Symbiosis), St.-Petersburg, Inform-Navigator, 2012.

  45. Provorov, N.A. and Vorobyov, N.I., Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations, Theor. Population Biol., 2006, vol. 70, pp. 262‒272.

    Article  Google Scholar 

  46. Provorov, N.A., Onishchuk, O.P., Yurgel, S.N., Kurchak, O.N., Chizhevaskaya, E.P., Vorobyov, N.A., Zatovskaya, T.V., and Simarov, B.V., Construction of highly effective symbiotic bacteria: evolutionary models and genetic approaches, Rus. J. Genet., 2014, vol. 50, pp. 1125–1136.

    Article  CAS  Google Scholar 

  47. Qian, J. and Parker, M.P., Contrasting nifD and ribosomal gene relationships among Mesorhizobium from Lotus oroboides in Northern Mexico, Syst. Appl. Microbiol., 2002, vol. 25, pp. 68‒73.

    Article  CAS  PubMed  Google Scholar 

  48. Richardson, D.M., Allsopp, N., d’Antonio, C.M., Milton, S.J., and Rejmanek, M., Plant invasions–the role of mutualisms, Biol. Rev., 2000, vol. 75, pp. 65‒93.

    Article  CAS  PubMed  Google Scholar 

  49. Rome, S., Fernandez, M.P., Brunel, M.P., Normand, P., and Cleyet-Marel, J.C., Evidence that two genomic species of Rhizobium are associated with Medicago truncatula,Int. J. System. Bacteriol., 1996, vol. 46, pp. 972‒980.

    Article  CAS  Google Scholar 

  50. Ronald, A., The etiology of urinary tract infection: traditional and emerging pathogens, Dis. Mon., 2003, vol. 49, pp. 71–82. https://doi.org/10.1067/mda.2003.8

    Article  PubMed  Google Scholar 

  51. Roumiantseva, M.L., Andronov, E.E., Sagulenko, V.V., Onishchuk, O.P., Provorov, N.A., and Simarov, B.V., Instability of cryptic plasmids in Sinorhizobium meliloti strain P108 in the course of symbiosis with alfalfa Medicago sativa,Rus. J. Genet., 2004, vol. 40, pp. 356–362.

    Article  CAS  Google Scholar 

  52. Safronova, V.I., Kimeklis, A.K., Chizhevskaya, E.P., Belimov, A.A., Andronov, E.E., Pinaev, A.G., Pukhaev, A.R., Popov, K.P., and Tikhonovich, I.A., Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed., Antonie Van Leeuwenhoek, 2014, vol. 105, pp. 389–399.

    Article  PubMed  Google Scholar 

  53. Safronova, V.I., Kuznetsova, I.G., Sazanova, A.L., Kimeklis, A.K., Belimov, A.A., Andronov, E.E., Pinaev, A.G., Pukhaev, A.R., Popov, K.P., Akopian, J.A., Willems, A., and Tikhonovich, I.A., Extra-slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed., Arch. Microbiol., 2015, vol. 197, pp. 889‒898.

    Article  CAS  PubMed  Google Scholar 

  54. Seguin, P., Graham, P.H., Sheaffer, C.C., Ehlke, N.J., and Russelle, M.P., Genetic diversity of rhizobia nodulating Trifolium ambiguum in North America, Can. J. Microbiol., 2001, vol. 47, pp. 81‒85.

    Article  CAS  PubMed  Google Scholar 

  55. Sprent, J.I., Nodulation in Legumes, Kew Royal Botanical Gardens: Cromwell, 2001.

  56. Sprent, J.I., West African legumes: the role of nodulation and nitrogen fixation, New Phytol., 2005, vol. 167, pp. 326‒330.

    Article  CAS  PubMed  Google Scholar 

  57. Stepkowski, T., Moulin, L., Krzyianska, A., McInnes, A., Law, I.J., and Howieson, J., European origin of Bradyrhizobium populations infecting lupins and seradella in soils of Western Australia and South Africa, Appl. Environ. Microbiol., 2005, vol. 71, pp. 7041‒7052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sullivan, J.T., Patrick, H.N., Lowther, W.L., Scott, D.B., and Ronson, C.W., Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 8985‒8989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sullivan, J.T., Trzebiatowski, J.R., Cruickshank, R.W., Gouzy, J., Brown, S.D., Elliot, R.M., Fleetwood, D.J., McCalum, N.G., Rossbach, U., Stuart, G.S., Weaver, J.E., Webby, R.J., de Bruijn, F., and Ronson, C., Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A, J. Bacteriol., 2002, vol. 184, pp. 3086‒3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson, J.N. and Burdon, J., Gene-for-gene co-evolution between plants and parasites, Nature, 1992, vol. 360, pp. 121‒125.

    Article  Google Scholar 

  61. Tian, C.F., Zhou, Y.L., Zhang, Y.M., Li, Q.Q., Zhang, Y.Z., Li, D.F., Wang, S., Wang, J., Gilbert, L.B., Li, Y.L., and Chen, W.X., Comparative genomics of rhizobia nodulating soybeans suggests extensive recruitment of lineage-specific genes in adaptations, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 8629‒8634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Timofeev-Resovskii, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolutsii (A Brief Outline of the Evolutionary Theory), Moscow: Nauka, 1977.

  63. Triplett, E.V. and Sadowsky, M.E., Genetics of competition for nodulation of legumes, Annu. Rev. Microbiol., 1992, vol. 46, pp. 399‒428.

    Article  CAS  PubMed  Google Scholar 

  64. Tsyganova, A.V., Seliverstova, E.V., Onishchuk, O.P., Kurchak, O.N., Kimeklis, A.K., Sazanova, A.L., Kuznetsova, I.G., Safronova, V.I., Belimov, A.A., Andronov, E.E., and Tsyganov, V.E., Ultrastructural features of the symbiotic root nodules of relic legumes, in Rasteniya i mikroorganizmy: biotekhnologiya budushchego (Plants and Microorganisms: A Future Biotechnology), Tikhonovich, I.A., Ed., Ufa: Tsentr Podderzhki Akademicheskikh Initsiativ, 2018.

  65. Ulrich, A. and Zaspel, I., Phylogenetic diversity of rhizobial strains nodulating Robinia pseudoacacia L., Microbiology (SGM), 2000, vol. 146, pp. 2997‒3005.

    Article  CAS  PubMed  Google Scholar 

  66. van der Putten, W.H., Klironomos, J.N., and Wardle, D.A., Microbial ecology of biological invasions, IMSE J., 2007, vol. 1, pp. 28‒37.

    Google Scholar 

  67. Vorobyov, N.I. and Provorov, N.A., Simulation of the evolution of the legume-rhizobia symbiosis under the conditions of ecological instability, Rus. J. Genet.: Appl. Res., 2015a, vol. 5, pp. 91–101.

    Article  Google Scholar 

  68. Vorobyov, N.I. and Provorov, N.A., The Quorum Sensing and the nodulation competitiveness of rhizobia during infection of leguminous plants, Agricultural Biol., 2015b, vol. 50, pp. 298‒304.

    Google Scholar 

  69. Wang, D., Yang, S., Tang, F., Zhu, H., Symbiosis specificity in the legume–rhizobial mutualism, Cell Microbiol., 2012, vol. 14, pp. 334–342.

    Article  PubMed  CAS  Google Scholar 

  70. Wang, E.T., van Berkum, P., Sui, X.H., Beyene, D., Chen, W., and Martinez-Romero, E., Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 51‒65.

    Article  PubMed  Google Scholar 

  71. Williams, K.P., Gillespie, J.J., Sobral, B.W.S., Nordberg, E.K., Snyder, E.E., Shallom, J.M., and Dickerman, A.W., Phylogeny of Gammaproteobacteria, J. Bacteriol., 2010, vol. 192, pp. 2305‒2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wojciechowski, M.F., Lavin, M., and Sanderson, M.J., A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family, Amer. J. Bot., 2004, vol. 91, pp. 1846‒1862. https://doi.org/10.3732/ajb.91.11.1846

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 19-16-00081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provorov, N.A., Andronov, E.E., Kimeklis, A.K. et al. Evolutionary Geography of Root Nodule Bacteria: Speciation Directed by the Host Plants. Microbiology 89, 1–12 (2020). https://doi.org/10.1134/S0026261720010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720010129

Keywords:

Navigation