Skip to main content
Log in

Mapping of the regulatory sequence within the yellow gene enhancers of D. melanogaster, required for the long-distance enhancer–promoter interaction

  • Molecular Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

One of the features of transcriptional regulation in higher eukaryotes is the ability of enhancers to activate gene transcription, being at a distance, sometimes reaching several hundred kilobases away from the promoter. For several genes, it was demonstrated that cis-regulatory DNA sequences located near the core promoter sequences play an important role in the enhancer–promoter communication. In this study, we first showed that the sequence from–890 to–1620 bp relative to the yellow transcription start site, called a communicator, is required for the long-distance activation of the yellow promoter by the body and wing enhancers, as well as for their bypass of the Su(Hw)-dependent insulation. The communicator is a functional partner of a previously described regulatory element located between–69 and–100 bp in the upstream promoter region of the yellow gene. The results of this study demonstrate that specific regulatory elements in the promoter and enhancer regions may be involved in providing long-distance interactions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erokhin, M., Vassetzky, Y., Georgiev, P., and Chetverina, D., Eukaryotic enhancers: common features, regulation, and participation in diseases, Cell Mol. Life Sci., 2015, vol. 72, no. 12, pp. 2361–2375. doi 10.1007/s00018-015-1871-9

    Article  CAS  PubMed  Google Scholar 

  2. Sanyal, A., Lajoie, B.R., Jain, G., and Dekker, J., The long-range interaction landscape of gene promoters, Nature, 2012, vol. 489, pp. 109–113. doi 10.1038/nature11279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sexton, T., Yaffe, E., Kenigsberg, E., et al., Three dimensional folding and functional organization principles of the Drosophila genome, Cell, 2012, vol. 148, pp. 458–472. doi 10.1016/j.cell.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  4. Maksimenko, O. and Georgiev, P., Mechanisms and proteins involved in long-distance interactions, Front. Genet., 2014, vol. 5, p. 28. doi 10.3389/fgene.2014. 00028

    Article  PubMed  PubMed Central  Google Scholar 

  5. Calhoun, V.C., Stathopoulos, A., and Levine, M., Promoter–proximal tethering elements regulate enhancer–promoter specificity in the Drosophila Antennapedia complex, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 9243–9247. doi 10.1073/pnas. 142291299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calhoun, V.C., and Levine, M., Long-range enhancer–promoter interactions in the Scr-Antp interval of the Drosophila Antennapedia complex, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 9878–9883. doi 10.1073/pnas.1233791100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akbari, O.S., Bae, E., Johnsen, H., et al., A novel promoter–tethering element regulates enhancer-driven gene expression at the bithorax complex in the Drosophila embryo, Development, 2008, vol. 135, pp. 123–131. doi 10.1242/dev.010744

    Article  CAS  PubMed  Google Scholar 

  8. Melnikova, L., Kostuchenko, M., Silicheva, M., and Georgiev, P., Drosophila gypsy insulator and yellow enhancers regulate activity of yellow promoter through the same regulatory element, Chromosoma, 2008, vol. 117, pp. 137–145. doi 10.1007/s00412-007-0132-6

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, E.B., The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster, Am. Nat., 1954, vol. 88, pp. 225–239.

    Article  Google Scholar 

  10. Pirrotta, V., Transvection and chromosomal transinteraction effects, Biochim. Biophys. Acta, 1999, vol. 1424, no. 1, pp. M1–M8.

    CAS  PubMed  Google Scholar 

  11. Wu, C.-T. and Morris, J.R., Transvection and other homology effects, Curr. Opin. Genet. Dev., 1999, vol. 9, pp. 237–246.

    Article  CAS  PubMed  Google Scholar 

  12. Duncan, I.W., Transvection effects Drosophila, Annu. Rev. Genet., 2002, vol. 36, pp. 521–556.

    Article  CAS  PubMed  Google Scholar 

  13. Kennison, J.A. and Southworth, J.W., Transvection in Drosophila, Adv. Genet., 2002, vol. 46, pp. 399–420.

    CAS  PubMed  Google Scholar 

  14. Martinez-Laborda, A., Gonzales-Reyes, A., and Morata, G., Transregulation in the Ultrabithorax gene of Drosophila: alterations in the promoter enhance transvection, EMBO J., 1992, vol. 11, pp. 3645–3652.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sipos, L., Mihaly, J., Karch, F., et al., Transvection in the Drosophila Abd-B domain: extensive upstream sequences are involved in anchoring distant cisregulatory regions to the promoter, Genetics, 1998, vol. 149, pp. 1031–1050.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Geyer, P.K., Green, M.M., and Corces, V.G., Tissuespecific transcriptional enhancers may act in trans on the gene located in the homologous chromosome: the molecular basis of transvection in Drosophila, EMBO J., 1990, vol. 9, pp. 2247–2256.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morris, J.R., Chen, J.-L., Filandrinos, S.T., et al. An analysis of transvection at the yellow locus of Drosophila melanogaster, Genetics, 1999, vol. 151, pp. 633–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morris, J.R., Geyer, P.K., and Wu, C.-T., Core promoter elements can regulate transcription on a separate chromosome in trans, Genes Dev., 1999, vol. 13, pp. 253–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nash, W.G. and Yarkin, R.J., Genetic regulation and pattern formation: a study of the yellow locus in Drosophila melanogaster, Genet. Res., 1974, vol. 24, pp. 19–26.

    Article  CAS  PubMed  Google Scholar 

  20. Walter, M.F., Black, B.C., Afshar, G., et al., Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopadecarboxylase activity in Drosophila development, Dev. Biol., 1991, vol. 147, pp. 32–45.

    Article  CAS  PubMed  Google Scholar 

  21. Geyer, P.K. and Corces, V.G., Separate regulatory elements are responsible for the complex pattern of tissuespecific and developmental transcription of the yellow locus in Drosophila melanogaster, Genes Dev., 1987, vol. 1, pp. 996–1004.

    Article  CAS  PubMed  Google Scholar 

  22. Biessmann, H. and Mason, J.M., Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster, EMBO J., 1988, vol. 7, no. 4, pp. 1081–1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brasset, E. and Vaury, C., Insulators are fundamental components of the eukaryotic genomes, Heredity, 2005, vol. 94, pp. 571–576.

    Article  CAS  PubMed  Google Scholar 

  24. Maksimenko, O.G., Chetverina, D.A., and Georgiev, P.G., Insulators of higher eukaryotes: properties, mechanisms of action, and role in transcriptional regulation, Russ. J. Genet., 2006, vol. 42, no. 8, pp. 845–857.

    Article  CAS  Google Scholar 

  25. Kyrchanova, O. and Georgiev, P., Chromatin insulators and long-distance interactions in Drosophila, FEBS Lett., 2014, vol. 588, no. 1, pp. 8–14. doi 10.1016/j.febslet. 2013.10.039

    Article  CAS  PubMed  Google Scholar 

  26. Herold, M., Bartkuhn, M., and Renkawitz, R., CTCF: insights into insulator function during development, Development, 2012, vol. 139, pp. 1045–1057. doi 10.1242/dev.065268

    Article  CAS  PubMed  Google Scholar 

  27. Spana, C. and Corces, V.G., DNA bending is a determinant of binding specificity for a Drosophila zinc finger protein, Genes Dev., 1990, vol. 4, pp. 1505–1515.

    Article  CAS  PubMed  Google Scholar 

  28. Scott, K.S., Taubman, A.D., and Geyer, P.K., Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength, Genetics, 1999, vol. 153, pp. 787–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Geyer, P.K., Spana, C., and Corces, V.G., On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster, EMBO J., 1986, vol. 5, pp. 2657–2662.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Parkhurst, S. and Corces, V.G., Interactions among the gypsy element and the yellow and suppressor of Hairywing loci in Drosophila melanogaster, Mol. Cell Biol., 1986, vol. 6, pp. 47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeong, S., Rokas, A., and Carroll, S.B., Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution, Cell, 2006, vol. 125, no. 7, pp. 1387–1399.

    Article  CAS  PubMed  Google Scholar 

  32. Pirrotta, V., Vectors for P-mediated transformation in Drosophila, Biotechnology, 1988, vol. 10, pp. 437–456.

    CAS  PubMed  Google Scholar 

  33. Savitskaya, E., Melnikova, L., Kostuchenko, M., et al., Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer-promoter communication in Drosophila melanogaster, Mol. Cell Biol., 2006. vol. 26, no. 3, pp. 754–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ashburner, M., Drosophila: A Laboratory Manual, New York: Cold. Spring Harbor Lab., 1989.

    Google Scholar 

  35. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  36. Karess, R.E. and Rubin, G.M., Analysis of P transposable element functions in Drosophila, Cell, 1984, vol. 38, no. 1, pp. 135–146.

    Article  CAS  PubMed  Google Scholar 

  37. Rubin, G.M. and Spradling, A.C., Genetic transformation of Drosophila with transposable element vectors, Science, 1982, vol. 218, no. 4570, pp. 348–353.

    Article  CAS  PubMed  Google Scholar 

  38. Spradling, A.C. and Rubin, G.M., Transposition of cloned P elements into Drosophila germ line chromosomes, Science, 1982, vol. 218, no. 4570, pp. 341–347.

    Article  CAS  PubMed  Google Scholar 

  39. Siegal, M.L. and Hartl, D.L., Application of Cre/loxP in Drosophila: site-specific recombination and transgene co-placement, Methods Mol. Biol., 2000, vol. 136, pp. 487–495.

    CAS  PubMed  Google Scholar 

  40. Morris, J.R., Petrov, D.A., Lee, A.M., and Wu, C.-T., Enhancer choice in cis and in trans in Drosophila melanogaster: role of the promoter, Genetics, 2004, vol. 167, pp. 1739–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, A.M. and Wu, C.-T., Enhancer–promoter communication at the yellow gene in Drosophila melanogaster: diverse promoters participate in and regulate transinteractions, Genetics, 2006, vol. 174, pp. 1867–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Erokhin, M., Davydova, A., Kyrchanova, O., et al., Insulators form gene loops by interacting with promoters in Drosophila, Development, 2011, vol. 138, pp. 4097–4106. doi 10.1242/dev.062836

    Article  CAS  PubMed  Google Scholar 

  43. Kostyuchenko, M., Savitskaya, E., Koryagina, E., et al., Zeste can facilitate long-range enhancer–promoter communication and insulator bypass in Drosophila melanogaster, Chromosoma, 2009, vol. 118, pp. 665–674. doi 10.1007/s00412-009-0226-4

    Article  CAS  PubMed  Google Scholar 

  44. Qian, Su, Varjavand, B., and Pirrotta, V., Molecular analysis of the zeste–white interaction reveals a promoter–proximal element essential for distant enhancer–promoter communication, Genetics, 1992, vol. 131, pp. 79–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahmoudi, T., Katsany, K., and Verrijzer, C., GAGA can mediate enhancer function in trans by linking two separate DNA molecules, EMBO J., 2002. vol. 21. pp. 1775–1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petrascheck, M., Escher, D., Mahmoudi, T., et al., DNA looping induced by a transcriptional enhancer in vivo, Nucleic Acids Res., 2005, vol. 33, pp. 3743–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pirrotta, V., The genetics and molecular biology of zeste in Drosophila melanogaster, Adv. Genet., 1991, vol. 29, pp. 301–348.

    CAS  PubMed  Google Scholar 

  48. Chen, J.D. and Pirrotta, V., Stepwise assembly of hyperaggregated forms of Drosophila zeste mutant protein suppresses white gene expression in vivo, EMBO J., 1993, vol. 12, pp. 2061–2073.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Palstra, R.J. and Grosveld, F., Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux, Front. Genet., 2012, vol. 3, p. 195. doi 10.3389/fgene.2012.00195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kyrchanova, O., Maksimenko, O., Stakhov, V., et al., Effective blocking of the white enhancer requires cooperation between two main mechanisms suggested for the insulator function, PLoS Genet., 2013, vol. 9, no. 7, e1003606. doi 10.1371/journal.pgen.1003606

    Google Scholar 

  51. Melnikova, L., Juge, F., Gruzdeva, N., et al., Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 41, pp. 14806–14811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Melnikova.

Additional information

Original Russian Text © L.S. Melnikova, M.V. Kostyuchenko, A.K. Golovnin, P.G. Georgiev, 2017, published in Genetika, 2017, Vol. 53, No. 4, pp. 426–438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, L.S., Kostyuchenko, M.V., Golovnin, A.K. et al. Mapping of the regulatory sequence within the yellow gene enhancers of D. melanogaster, required for the long-distance enhancer–promoter interaction. Russ J Genet 53, 433–444 (2017). https://doi.org/10.1134/S1022795417030085

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417030085

Keywords

Navigation