Skip to main content
Log in

Zeste can facilitate long-range enhancer–promoter communication and insulator bypass in Drosophila melanogaster

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The looping model of enhancer–promoter interactions predicts that these specific long-range interactions are supported by a certain class of proteins. In particular, the Drosophila transcription factor Zeste was hypothesized to facilitate long-distance associations between enhancers and promoters. We have re-examined the role of Zeste in supporting long-range interactions between an enhancer and a promoter using the white gene as a model system. The results show that Zeste binds to the upstream white promoter region and the enhancer that is responsible for white activation in the eyes. We have confirmed the previous finding that Zeste is not required for the activity of the eye enhancer and the promoter when they are located in close proximity to each other. However, inactivation of Zeste markedly affects the enhancer–promoter communication in transgenes when the eye enhancer and the white promoter are separated by a 3-kb spacer or the yellow gene. Zeste is also required for insulator bypass by the eye enhancer. Taken together, these results show that Zeste can support specific long-range interactions between enhancers and promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benson M, Pirrotta V (1988) The Drosophila zeste protein binds cooperatively to sites in many gene regulatory regions: implications for transvection and gene regulation. EMBO J 7:3907–3915

    PubMed  CAS  Google Scholar 

  • Blackwood E, Kadonaga J (1998) Going the distance: a current view of the enhancer action. Science 281:60–63

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko VA, Liu YV, Jiang YI, Studitsky VM (2003) Communication over a large distance: enhancers and insulators. Biochem Cell Biol 81:241–251

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Shen P (2001) Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. Science 291:493–495

    Article  PubMed  CAS  Google Scholar 

  • Calhoun VC, Levine M (2003) Long-range enhancer–promoter interactions in the Scr−Antp interval of the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 100:9878–9883

    Article  PubMed  CAS  Google Scholar 

  • Calhoun VC, Stathopoulos A, Levine M (2002) Promoter-proximal tethering elements regulate enhancer–promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 99:9243–9247

    Article  PubMed  CAS  Google Scholar 

  • Carmena M, González C (1995) Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103:676–684

    Article  PubMed  CAS  Google Scholar 

  • Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32:623–626

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Chen JD, Pirrotta V (1993) Stepwise assembly of hyperaggregated forms of Drosophila zeste mutant protein suppresses white gene expression in vivo. EMBO J 12:2061–2073

    PubMed  CAS  Google Scholar 

  • Cryderman DE, Morris EJ, Biessmann H, Elgin SC, Wallrath LL (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J 18:3724–3735

    Article  PubMed  CAS  Google Scholar 

  • de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chrom Res 11:447–459

    Article  PubMed  Google Scholar 

  • Dejardin J, Cavalli G (2004) Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J 23:857–868

    Article  PubMed  CAS  Google Scholar 

  • Dillon N, Sabbattini P (2000) Functional gene expression domains: defining the functional unit of eukaryotic gene regulation. Bioessays 22:657–665

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (1999) Distant liaisons: long range enhancer–promoter interactions in Drosophila. Curr Opin Genet Dev 9:505–514

    Article  PubMed  CAS  Google Scholar 

  • Fanti L, Berloco M, Piacentini L, Pimpinelli S (2003) Chromosomal distribution of Heterochromatin Protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117:135–147

    Article  PubMed  CAS  Google Scholar 

  • Georgiev P, Kozycina M (1996) Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations. Genetics 142:425–436

    PubMed  CAS  Google Scholar 

  • Geyer PK, Corces VG (1992) DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes Dev 6:1865–1873

    Article  PubMed  CAS  Google Scholar 

  • Geyer PK, Green MM, Corces VG (1988) Reversion of a gypsy-induced mutation at the yellow (y) locus of Drosophila melanogaster is associated with the insertion of a newly defined transposable element. Proc Natl Acad Sci U S A 85:3938–3942

    Article  PubMed  CAS  Google Scholar 

  • Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom K, Muller M, Schedl P (1996) Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev 24:3202–3215

    Article  Google Scholar 

  • Holdridge C, Dorsett D (1991) Repression of hsp70 heat shock gene transcription by the suppressor of Hairy-wing protein of Drosophila melanogaster. Mol Cell Biol 11:1894–1900

    PubMed  CAS  Google Scholar 

  • Hur MW, Laney JD, Jeon SH, Ali J, Biggin MD (2002) Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 129:1339–1343

    PubMed  CAS  Google Scholar 

  • Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP (2000) The Drosophila brahma complex is an essential coactivator for the trithorax group protein Zeste. Genes Dev 14:1058–1071

    PubMed  CAS  Google Scholar 

  • Kares RE, Rubin GM (1984) Analysis of P transposable element functions in Drosophila. Cell 38:135–146

    Article  Google Scholar 

  • Laney JD, Biggin MD (1997) Zeste-mediated activation by an enhancer is independent of cooperative DNA binding in vivo. Proc Natl Acad Sci USA 94:3602–3604

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–150

    Article  PubMed  CAS  Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic, New York

    Google Scholar 

  • Mahmoudi T, Katsany K, Verrijzer C (2002) GAGA can mediate enhancer function in trans by linking two separate DNA molecules. EMBO J 21:1775–1781

    Article  PubMed  CAS  Google Scholar 

  • Melnikova L, Juge F, Gruzdeva N, Mazur A, Cavalli G, Georgiev P (2004) Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila. Proc Natl Acad Sci USA 101:14806–14811

    Article  PubMed  CAS  Google Scholar 

  • Muravyova E, Golovnin A, Gracheva E, Parshikov A, Belenkaya T, Pirrotta V, Georgiev P (2001) Loss of insulator activity by paired Su(Hw) chromatin insulators. Science 291:495–498

    Article  PubMed  CAS  Google Scholar 

  • Patrinos GP, de Krom M, de Boer E, Langeveld A, Imam AM, Strouboulis J, de Laat W, Grosveld FG (2004) Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev 18:1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Petrascheck M, Escher D, Mahmoudi T, Verrijzer CP, Schaffner W, Barberis A (2005) DNA looping induced by a transcriptional enhancer in vivo. Nucleic Acids Res 33:3743–3750

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V (1988) Vectors for P-mediated transformation in Drosophila, in vectors. In: Rodriguez RL, Denhardt T (eds) A survey of molecular cloning vectors and their uses. Butterworths, Boston, pp 437–445

    Google Scholar 

  • Pirrotta V (1991) The genetics and molecular biology of zeste in Drosophila melanogaster. Adv Genet 29:301–348

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta V (1999) Transvection and chromosomal trans-interaction effects. Biochim Biophys Acta 1424:M1–M8

    PubMed  CAS  Google Scholar 

  • Pirrotta V, Manet E, Hardon E, Bickel S, Benson M (1987) Structure and sequence of the Drosophila zeste gene. EMBO J 6:791–799

    PubMed  CAS  Google Scholar 

  • Pirrotta V, Bickel S, Mariani C (1988) Developmental expression of the Drosophila zeste gene and localization of zeste protein on polytene chromosomes. Genes Dev 2:1839–1850

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1986) Gene regulation by proteins acting nearby and at a distance. Nature 322:697–701

    Article  PubMed  CAS  Google Scholar 

  • Qian Su, Varjavand B, Pirrotta V (1992) Molecular analysis of the zeste-white interaction reveals a promoter-proximal element essential for distant enhancer–promoter communication. Genetics 131:79–90

    PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Siegal ML, Hartl DL (2000) Application of Cre/loxP in Drosophila. Site-specific recombination and transgene co-placement. Methods Mol Biol 136:487–495

    PubMed  CAS  Google Scholar 

  • Sipos L, Gyurkovics H (2005) Long-distance interactions between enhancers and promoters. The case of the Abd-B domain of the Drosophila bithorax complex. FEBS J 272:3253–3259

    Article  PubMed  CAS  Google Scholar 

  • Sipos L, Mihaly J, Karch F, Schedl P, Gausz J, Gyurkovics H (1998) Transvection in the Drosophila Abd-B domain: extensive upstream sequences are involved in anchoring distant cis-regulatory regions to the promoter. Genetics 149:1031–1050

    PubMed  CAS  Google Scholar 

  • Smith PA, Corces VG (1992) The suppressor of Hairy-wing binding region is required for gypsy mutagenesis. Mol Gen Genet 233:65–70

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into germline chromosomes. Science 218:341–347

    Article  PubMed  CAS  Google Scholar 

  • Su W, Jackson S, Tjian R, Echols H (1991) DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1. Genes Dev 5:820–826

    Article  PubMed  CAS  Google Scholar 

  • Su Q, Varjavand B, Pirrotta V (1992) Molecular analysis of the zeste−white interaction reveals a promoter-proximal element essential for distant enhancer–promoter communication. Genetics 131:79–90

    Google Scholar 

  • Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active β-globin locus. Mol Cell 10:1453–1465

    Article  PubMed  CAS  Google Scholar 

  • Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17:453–462

    Article  PubMed  CAS  Google Scholar 

  • West AG, Fraser P (2005) Remote control of gene transcription. Hum Mol Genet 14:R101–R111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to N.A. Gorgolyuk for his help in preparing the manuscript. This study was supported by the MD-268-2003-04 grant, the Russian Foundation for Basic Research (projects nos. 06-04-48360-а, 09-04-00273-а), the Young Scientists Support Program of the Russian Academy of Sciences (project no. 15/2006-2009 to M.K.), a stipend from the Center for Medical Studies, Oslo University (to L.M.), grant no. 02.512.11.2252 from the Ministry of Science and Education of the Russian Federation, the Molecular and Cell Biology Program of the Russian Academy of Sciences, and the International Research Scholar Award from the Howard Hughes Medical Institute (to P.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Georgiev.

Additional information

Communicated by R. Paro

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuchenko, M., Savitskaya, E., Koryagina, E. et al. Zeste can facilitate long-range enhancer–promoter communication and insulator bypass in Drosophila melanogaster . Chromosoma 118, 665–674 (2009). https://doi.org/10.1007/s00412-009-0226-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0226-4

Keywords

Navigation