Skip to main content
Log in

Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Integration of the methods of contemporary genetics and biotechnology into the breeding process is assessed, and the potential role and efficacy of genome editing as a novel approach is discussed. Use of molecular (DNA) markers for breeding was proposed more than 30 years ago. Nowadays, they are widely used as an accessory tool in order to select plants by mono- and olygogenic traits. Presently, the genomic approaches are actively introduced into the breeding processes owing to automatization of DNA polymorphism analyses and development of comparatively cheap methods of DNA sequencing. These approaches provide effective selection by complex quantitative traits, and are based on the full-genome genotyping of the breeding material. Moreover, biotechnological tools, such as doubled haploids production, which provides fast obtainment of homozygotes, are widely used in plant breeding. Use of genomic and biotechnological approaches makes the development of varieties less time consuming. It also decreases the cultivated areas and financial expenditures required for accomplishment of the breeding process. However, the capacities of modern breeding are not limited to only these advantages. Experiments carried out on plants about 10 years ago provided the first data on genome editing. In the last two years, we have observed a sharp increase in the number of publications that report about successful experiments aimed at plant genome editing owing to the use of the relatively simple and convenient CRISPR/Cas9 system. The goal of some of these experiments was to modify agriculturally valuable genes of cultivated plants, such as potato, cabbage, tomato, maize, rice, wheat, barley, soybean and sorghum. These studies show that it is possible to obtain nontransgenic plants carrying stably inherited, specifically determined mutations using the CRISPR/Cas9 system. This possibility offers the challenge to obtain varieties with predetermined mono- and olygogenic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moose, S.P. and Mumm, R.H., Molecular plant breeding as the foundation for 21st century crop improvement, Plant Physiol., 2008, vol. 147, pp. 969–977. http://dxdoiorg/ doi 10.1104/pp.108.118232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heffner, E.L., Lorenz, A.J., Jannink, J.-L., and Sorrells, M.E., Plant breeding with genomic selection: gain per unit time and cost, Crop Sci., 2010, vol. 50, pp. 1681–1690. doi 10.2135/cropsci2009.11.0662

    Article  Google Scholar 

  3. Khlestkina, E.K., Molecular markers in genetic studies and breeding, Russ. J. Genet., Appl. Res., 2014, vol. 4, no. 3, pp. 236–244.

    Article  Google Scholar 

  4. Gelvin, S.B., The introduction and expression of transgenes in plants, Curr. Opin. Biotechnol., 1998, vol. 9, pp. 227–232. doi 10.1016/0304-4238(93)90023-J

    Article  CAS  PubMed  Google Scholar 

  5. Feng, Z., Zhang, B., Ding, W., et al., Efficient genome editing in plants using a CRISPR/Cas system, Cell Res., 2013, vol. 23, pp. 1229–1232. doi 10.1038/cr.2013.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, J.F., Norville, J.E., Aach, J., et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat. Biotechnol., 2013, vol. 31, pp. 688–691. doi 10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nekrasov, V., Staskawicz, B., Weigel, D., et al., Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol., 2013, vol. 31, pp. 691–693. doi 10.1038/nbt.2655

    Article  CAS  PubMed  Google Scholar 

  8. Shan, Q., Wang, Y., Li, J., et al., Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol., 2013, vol. 31, pp. 686–688. doi 10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  9. Xie, K. and Yang, Y., RNA-guided genome editing in plants using a CRISPR-Cas system, Mol. Plant, 2013, vol. 6, pp. 1975–1983. doi 10.1093/mp/sst119

    Article  CAS  PubMed  Google Scholar 

  10. Beckmann, J.S. and Soller, M., Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs, Theor. Appl. Genet., 1983, vol. 67, pp. 35–43. doi 10.1007/BF00303919

    Article  CAS  PubMed  Google Scholar 

  11. Burr, B., Evola, S.V., Burr, F.A., and Beckmann, J.S., The application of restriction fragment length polymorphism to plant breeding, Genetic Engineering, Setlow, J.K., et al., Eds., New York: Plenum Press, 1983, pp. 45–59.

  12. Tanksley, S.D., Molecular markers in plant breeding, Plant Mol. Biol. Rep., 1983, vol. 1, pp. 3–8. doi 10.1007/BF02680255

    Article  CAS  Google Scholar 

  13. Khlestkina, E.K. and Salina, E.A., SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 585–594. doi 10.1134/S1022795406060019

    Article  CAS  Google Scholar 

  14. Landjeva, S., Korzun, V., and Börner, A., Molecular markers: actual and potential contributions to wheat genome characterization and breeding, Euphytica, 2007, vol. 156, pp. 271–296. doi 10.1007/s10681-007- 9371-0

    Article  CAS  Google Scholar 

  15. Khlestkina, E.K., Molecular methods for analyzing the structure-function organization of genes and genomes in higher plants, Russ. J. Genet., Appl. Res., 2012, vol. 2, no. 3, pp. 243–251.

    Article  Google Scholar 

  16. Brennan, J.P. and Martin, P.J., Returns to investment in new breeding technologies, Euphytica, 2007, vol. 157, pp. 337–349. doi 10.1007/s10681-007-9378-6

    Article  Google Scholar 

  17. Brumlop, S., Reichenbecher, W., Tappeser, B., and Finckh, M.R., What is the SMARTest way to breed plants and increase agrobiodiversity?, Euphytica, 2013, vol. 194, pp. 53–66. doi 10.1007/s10681-013-0960-9

    Article  Google Scholar 

  18. Timonova, E.M., Leonova, I.N., Röder, M.S., and Salina, E.A., Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome, Mol. Breed., 2013, vol. 31, pp. 123–136. doi 10.1007/s11032-012-9776-x

    Article  Google Scholar 

  19. Baenziger, P.S., Wesenberg, D.M., Smail, V.M., et al., Agronomic performance of wheat doubled haploid lines derived from cultivars by anther culture, Plant Breed., 1989, vol. 103, pp. 101–109. doi 10.1111/j.1439-0523.1989tb00357x

    Article  Google Scholar 

  20. Leonova, I.N., Molecular markers: Implementation in crop plant breeding for identification, introgression and gene pyramiding, Russ. J. Genet., Appl. Res., 2013, vol. 3, no. 6, pp. 464–473.

    Article  Google Scholar 

  21. William, H., Trethowan, R., and Crosby-Galvan, E., Wheat breeding assisted by markers: CIMMYT’s experience, Euphytica, 2007, vol. 157, pp. 307–319. doi 10.1007/s10681-007-9405-7

    Article  Google Scholar 

  22. Xu, Y. and Crouch, J.H., Marker-assisted selection in plant breeding: from publications to practice, Crop Sci., 2008, vol. 48, pp. 391–407. doi 10.2135/cropsci2007.04.0191

    Article  Google Scholar 

  23. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 1995, vol. 270, pp. 467–470. doi 10.1126/science. 270.5235.467

  24. Wang, D.G., Fan, J.B., Siao, C.J., et al., Large-scale identification, mapping, and genotyping of singlenucleotide polymorphisms in the human genome, Science, 1998, vol. 280, pp. 1077–1082. doi 10.1126/science. 280.5366.1077

    CAS  Google Scholar 

  25. Jaccoud, D., Peng, K., Feinstein, D., and Kilian, A., Diversity arrays: a solid state technology for sequence information independent genotyping, Nucleic Acids Res., 2001, vol. 29. e25. doi 10.1093/nar/29.4e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prashar, A., Hornyik, C., Young, V., et al., Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth, Theor. Appl. Genet., 2014, vol. 127, pp. 2159–2171. doi 10.1007/s00122-014-2369-9

    Article  PubMed  Google Scholar 

  27. Jighly, A., Oyiga, B.C., Makdis, F., et al., Genomewide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm, Theor. Appl. Genet., 2015, vol. 128, pp. 1277–1295. doi 10.1007/s00122-015-2504-2

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Q., Chen, Y., Fu, L., et al., QTL mapping of flag leaf traits in common wheat using an integrated highdensity SSR and SNP genetic linkage map, Euphytica, 2016. doi 10.1007/s10681-015-1603-0

    Google Scholar 

  29. Zhang, F., Xie, X., Xu, M., et al., Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers, Plant Breed., 2015, vol. 134, pp. 286–292. doi 10.1111/pbr.12256

    Article  CAS  Google Scholar 

  30. Kiseleva, A.A., Shcherban, A.B., Leonova, I.N., et al., Identification of new heading date determinants in wheat 5B chromosome, BMC Plant Biol., 2016, vol. 16, supp l. doi 10.1186/s12870-015-0688-x

  31. Heffner, E.L., Jannink, J.-L., and Sorrells, M.E., Genomic selection accuracy using multifamily prediction models in a wheat breeding program, Plant Genome, 2011, vol. 4, pp. 65–75. doi 10.3835/plantgenome2010.12.0029

  32. Charmet, G. and Storlie, E., Implementation of genome-wide selection in wheat, Russ. J. Genet., Appl. Res., 2012, vol. 2, no. 4, pp. 298–303.

    Article  Google Scholar 

  33. Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawarnoto, K., Buckler, E.S., and Mitchell, S.E., A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One, 2011, vol. 6. e19379. doi 10.1371/journalpone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paux, E., Sourdille, P., Mackay, I., and Feuillet, C., Sequence-based marker development in wheat: advances and applications to breeding, Biotechnol. Adv., 2012, vol. 30, pp. 1071–1088. doi 10.1016/jbiotechadv. 2011.09.015

    Article  CAS  PubMed  Google Scholar 

  35. Poland, J., Endelman, J., Dawson, J., et al., Genomic selection in wheat breeding using genotyping-bysequencing, Plant Genome, 2012, vol. 5, pp. 103–113. doi 10.3835/plantgenome2012.06.0006

    Article  CAS  Google Scholar 

  36. Kim, C., Guo, H., Kong, W., et al., Application of genotyping by sequencing technology to a variety of crop breeding programs, Plant Sci., 2016, vol. 242, pp. 14–22. doi 10.1016/jplantsci.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  37. Schlegel, R., Hybrid breeding boosted molecular genetics in rye, Vavilov. Zh. Genet. Selekt., 2015, vol. 19, no. 5, pp. 589–603. doi 10.18699/VJ15.076

    Article  Google Scholar 

  38. Kempe, K., Rubtsova, R., and Gils, M., Split-gene system for hybrid wheat seed production, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 9097–9102. doi 10.1073/pnas.1402836111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, J., Grizot, S., Arnould, S., et al., A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences, Nucleic Acids Res., 2006, vol. 34. e149. doi 10.1093/nar/gkl720

    Article  PubMed  PubMed Central  Google Scholar 

  40. Urnov, F.D., Miller, J.C., Lee, Y.L., et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, 2005, vol. 435, pp. 646–651. doi 10.1038/nature03556

    Article  CAS  PubMed  Google Scholar 

  41. Miller, J.C., Holmes, M.C., Wang, J., et al., An improved zinc-finger nuclease architecture for highly specific genome editing, Nat. Biotechnol., 2007, vol. 25, pp. 778–785. doi 10.1038/nbt1319

    Article  CAS  PubMed  Google Scholar 

  42. Romer, P., Hahn, S., Jordan, T., et al., Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene, Science, 2007, vol. 318, pp. 645–648. doi 10.1126/science.1144958

    Article  PubMed  Google Scholar 

  43. Boch, J., Scholze, H., Schornack, S., et al., Breaking the code of DNA binding specificity of TAL-type III effectors, Science, 2009, vol. 326, pp. 1509–1512. doi 10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  44. Moscou, M.J. and Bogdanove, A.J., A simple cipher governs DNA recognition by TAL effectors, Science, 2009, vol. 326, p. 1501. doi 10.1126/science.1178817

  45. Christian, M., Cermak, T., Doyle, E.L., et al., Targeting DNA double-strand breaks with TAL effector nucleases, Genetics, 2010, vol. 186, pp. 757–761. doi 10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, J.C., Tan, S., Qiao, G., et al., A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 2011, vol. 29, pp. 143–148. doi 10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  47. Cong, L., Ran, F.A., Cox, D., et al., Multiplex genome engineering using CRISPR/Cas systems, Science, 2013, vol. 339, pp. 819–823. doi 10.1126/science. 1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mali, P., Yang, L., Esvelt, K.M., et al., RNA-guided human genome engineering via Cas9, Science, 2013, vol. 339, pp. 823–826. doi 10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barrangou, R., Fremaux, C., Deveau, H., et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, 2007, vol. 315, pp. 1709–1712. doi 10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  50. Grissa, I., Vergnaud, G., and Pourcel, C., The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats, BMC Bioinf., 2007, vol. 8, p. 172. doi 0.1186/1471- 2105-8-172

    Article  Google Scholar 

  51. Feng, Z., Mao, Y., Xu, N., et al., Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 4632–4637. doi 10.1073/pnas.1400822111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao, Y. and Zhao, Y., Specific and heritable gene editing in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 4357–4358. doi 10.1073/pnas.1402295111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brooks, C., Nekrasov, V., Lippman, Z.B., and Van Eck, J., Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system, Plant Physiol., 2014, vol. 166, pp. 1292–1297. doi 10.1104/pp.114.247577

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fauser, F., Schiml, S., and Puchta, H., Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana, Plant J., 2014, vol. 79, pp. 348–359. doi 10.1111/tpj.12554

    Article  CAS  PubMed  Google Scholar 

  55. Jia, W., Yang, B., and Weeks, D.P., Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations, PLoS One, 2014, vol. 9. e99225. doi 10.1371/journalpone.0099225

    Article  Google Scholar 

  56. Schiml, S., Fauser, F., and Puchta, H., The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny, Plant J., 2014, vol. 80, pp. 1139–1150. doi 10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H., Zhang, J., Wei, P., et al., The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation, Plant Biotechnol. J., 2014, vol. 12, pp. 797–807. doi 10.1111/pbi.12200

    Article  CAS  PubMed  Google Scholar 

  58. Zhou, H., Liu, B., Weeks, D.P., et al., Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice, Nucleic Acids Res., 2014, vol. 42, pp. 10903–10914. doi 10.1093/nar/gku806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Svitashev, S., Young, J.K., Schwartz, C., et al., Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA, Plant Physiol., 2015, vol. 169, pp. 931–945. doi 10.1104/pp.15.00793

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu, R.F., Li, H., Qin, R.Y., et al., Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system, Sci. Rep., 2015, vol. 5, e11491. doi 10.1038/srep11491

    Article  Google Scholar 

  61. Cho, S.W., Kim, S., Kim, J.M., and Kim, J.S., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease, Nat. Biotechnol., 2013, vol. 31, pp. 230–232. doi 10.1038/nbt.2507

    Article  CAS  PubMed  Google Scholar 

  62. Mao, Y., Zhang, H., Xu, N., et al., Application of the CRISPR-Cas system for efficient genome engineering in plants, Mol. Plant, 2013, vol. 6, pp. 2008–2011. doi 10.1093/mp/sst121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Masterson, J., Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms, Science, 1994, vol. 264, pp. 421–424. doi 10.1126/science. 264.5157.421

  64. Wolfe, K.H., Yesterday’s polyploidization and the mystery of diploidization, Nat. Rev. Genet., 2001, vol. 2, pp. 233–241. doi 10.1038/35072009

    Article  Google Scholar 

  65. Lozano-Juste, J. and Cutler, S.R., Plant genome engineering in full bloom, Trends Plant Sci., 2014, vol. 19, pp. 284–287. doi 10.1016/jtplants.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  66. Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R., RNA-guided genome editing for target gene mutations in wheat, G3: Genes Genomes Genet., 2013, vol. 3, pp. 2233–2238. doi 10.1534/g3.113.008847

    Article  CAS  Google Scholar 

  67. Jia, H. and Wang, N., Targeted genome editing of sweet orange using Cas9/sgRNA, PLoS One, 2014, vol. 9. e93806. doi 10.1371/journalpone.0093806

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xie, K., Zhang, J., and Yang, Y., Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops, Mol. Plant, 2014, vol. 7, pp. 923–926. doi 10.1093/mp/ssu009

    Article  CAS  PubMed  Google Scholar 

  69. Doebley, J., Genetics, development and plant evolution, Curr. Opin. Genet. Dev., 1993, vol. 3, pp. 865–872.

    Article  CAS  PubMed  Google Scholar 

  70. Doebley, J. and Lukens, L., Transcriptional regulators and the evolution of plant form, Plant Cell, 1998, vol. 10, pp. 1075–1082. http://dxdoiorg/ doi 10.1105/ tpcdoi 10.7.1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Purugganan, M.D., The molecular evolution of development, BioEssays, 1998, vol. 20, pp. 700–711. doi 10.1002/(SICI)1521-1878(199809)

    Article  CAS  PubMed  Google Scholar 

  72. Khlestkina, E.K., Rö der, M.S., and Salina, E.A., Relationship between homoeologous regulatory and structural genes in allopolyploid genome–a case study in bread wheat, BMC Plant Biol., 2008, vol. 8, p. 88. doi 10.1186/1471-2229-8-88

    Article  PubMed  PubMed Central  Google Scholar 

  73. Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F., Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family, Genetics, 1995, vol. 140, pp. 345–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barrier, M., Robichaux, R.H., and Purugganan, M.D., Accelerated regulatory gene evolution in an adaptive radiation, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 10208–10213. doi 10.1073/pnas.181257698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Remington, D.L. and Purugganan, M.D., GAI homologues in the Hawaiian Silversword alliance (Asteraceae–Madiinae): molecular evolution of growth regulators in a rapidly diversifying plant lineage, Mol. Biol. Evol., 2002, vol. 19, pp. 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  76. Dias, A.P., Braun, E.L., McMullen, M.D., and Grotewold, E., Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication, Plant Physiol., 2003, vol. 131, pp. 610–620. http://dxdoiorg/ doi 10.1104/pp.012047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shoeva, O.Y., Khlestkina, E.K., Berges, H., and Salina, E.A., The homoeologous genes encoding chalcone–flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant, Gene, 2014, vol. 538, pp. 334–341. doi 10.1016/jgene.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  78. Hsu, P.D., Scott, D.A., Weinstein, J.A., et al., DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 2013, vol. 31, pp. 827–832. doi 10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McCallum, C.M., Comai, L., Greene, E.A., and Henikoff, S., Targeted screening for induced mutations, Nat. Biotechnol., 2000, vol. 18, pp. 455–457. doi 10.1038/74542

    Article  CAS  PubMed  Google Scholar 

  80. Gilbert, L.A., Larson, M.H., Morsut, L., et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 2013, vol. 154, pp. 442–451. doi 10.1016/jcell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maeder, M.L., Linder, S.J., Cascio, V.M., et al., CRISPR RNA-guided activation of endogenous human genes, Nat. Methods, 2013, vol. 10, pp. 977–979. doi 10.1038/nmeth.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Piatek, A., Ali, Z., Baazim, H., et al., RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors, Plant Biotechnol. J., 2014, vol. 13, pp. 578–579. doi 10.1111/pbi.12284

    Article  PubMed  Google Scholar 

  83. Anton, T., Bultmann, S., Leonhardt, H., and Markaki, Y., Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system, Nucleus, 2014, vol. 5, pp. 163–172. doi 10.4161/nucl.28488

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen, B., Gilbert, L.A., Cimini, B.A., et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 2013, vol. 155, pp. 1479–1491. doi 10.1016/jcell.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, Y., Cheng, X., Shan, Q., et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol., 2014, vol. 32, pp. 947–951. doi 10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  86. Liang, Z., Zhang, K., Chen, K., and Gao, C., Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system, J. Genet. Genomics, 2014, vol. 41, pp. 63–68. doi 10.1016/jjgg.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  87. Lawrenson, T., Shorinola, O., Stacey, N., et al., Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease, Genome Biol., 2015, vol. 16, p. 258. doi 10.1186/s13059-015-0826-7

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jiang, W., Zhou, H., Bi, H., et al., Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res., 2013, vol. 41. e188. doi 10.1093/ nar/gkt780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Endo, M., Mikami, M., and Toki, S., Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice, Plant Cell Physiol., 2015, vol. 56, pp. 41–47. doi 10.1093/pcp/pcu154

    Article  PubMed  Google Scholar 

  90. Cai, Y., Chen, L., Liu, X., et al., CRISPR/Cas9- mediated genome editing in soybean hairy roots, PLoS One, 2015, vol. 10. e0136064. doi 10.1371/journal. pone.0136064

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A., Targeted genome modifications in soybean with CRISPR/Cas9, BMC Biotechnol., 2015, vol. 15, no. 1, p. 16. doi 10.1186/s12896-015-0131-2

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li, Z., Liu, Z.B., Xing, A., et al., Cas9-guide RNA directed genome editing in soybean, Plant Physiol., 2015, vol. 169, pp. 960–970. doi 10.1104/pp.15.00783

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sun, X., Hu, Z., Chen, R., et al., Targeted mutagenesis in soybean using the CRISPR-Cas9 system, Sci. Rep., 2015, vol. 5, p. 10342. doi 10.1038/srep10342

    Article  PubMed  PubMed Central  Google Scholar 

  94. Martinelli, F., Grillone, G., and Sgroi, F., Proposal of a genome editing system for genetic resistance to tomato spotted wilt virus, Am. J. Appl. Sci., 2014, vol. 11, pp. 1904–1913. doi 10.3844/ajassp.2014.1904.1913

    Article  Google Scholar 

  95. Ito, Y., Nishizawa-Yokoi, A., Endo, M., et al., CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening, Biochem. Biophys. Res. Commun., 2015, vol. 467, no. 1, pp. 76–82. doi 10.1016/jbbrc.2015.09.117

    Article  CAS  PubMed  Google Scholar 

  96. Wang, S., Zhang, S., Wang, W., et al., Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system, Plant Cell Rep., 2015, vol. 34, pp. 1473–1476. doi 10.1007/s00299-015-1816-7

    Article  CAS  PubMed  Google Scholar 

  97. Doebley, J.F., Gaut, B.S., and Smith, B.D., The molecular genetics of crop domestication, Cell, 2006, vol. 127, pp. 1309–1321. doi 10.1016/jcell.2006. 12.006

    Article  CAS  PubMed  Google Scholar 

  98. Ainley, W.M., Sastry-Dent, L., Welter, M.E., et al., Trait stacking via targeted genome editing, Plant Biotechnol. J., 2013, vol. 11, pp. 1126–1134. doi 10.1111/pbi.12107

    Article  CAS  PubMed  Google Scholar 

  99. Hartung, F. and Schiemann, J., Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU, Plant J., 2014, vol. 78, pp. 742–752. doi 10.1016/jtibtech.2014.11.008

    CAS  PubMed  Google Scholar 

  100. Podevin, N., Davies, H.V., Hartung, F., et al., Sitedirected nucleases: a paradigm shift in predictable, knowledge-based plant breeding, Trends Biotechnol., 2013, vol. 31, pp. 375–383. doi 10.1016/jtibtech. 2013.03.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khlestkina.

Additional information

Original Russian Text © E.K. Khlestkina, V.K. Shumny, 2016, published in Genetika, 2016, Vol. 52, No. 7, pp. 774–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlestkina, E.K., Shumny, V.K. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Russ J Genet 52, 676–687 (2016). https://doi.org/10.1134/S102279541607005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541607005X

Keywords

Navigation