Skip to main content
Log in

Variability of allozyme and cpSSR markers in the populations of Siberian spruce

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The variability of 21 allozyme and three microsatellite loci of chloroplast DNA (cpDNA) was studied in the populations of Siberian spruce (Picea obovata Ledeb.) from Irkutsk oblast, Magadan oblast, Buryatia, and Mongolia. It was demonstrated that the highest level of genetic diversity among the examined populations at both allozyme and microsatellite loci was observed in the Tulyushka population from Irkutsk oblast. The lowest level of genetic diversity was observed in marginal isolated populations of Bogd Uul and Magadan. In the relict spruce population from Olkhon Island, differing from the other populations in the lowest allelic diversity of both types of markers, no expected decline of expected heterozygosity and haplotype diversity was observed. In this population, the variability parameters mentioned were close to the population mean. The obtained intrapopulation and intraspecific variability parameters of allozyme and microsatellite loci of chloroplast DNA and the data on the population differentiation at these loci indicate that the given markers can be used for the analysis of the population structure of Siberian spruce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pravdin, L.F., El’ evropeiskaya i el’ sibirskaya v SSSR (Norway and Siberian Spruce in the Soviet Union), Moscow: Nauka, 1975.

    Google Scholar 

  2. Bobrov, E.G., Lesoobrazuyushchie khvoinye SSSR (Forest-Forming Coniferous Species of the Soviet Union), Leningrad: Nauka, 1978.

    Google Scholar 

  3. Krutovskii, K.V. and Bergmann, F., Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci, Heredity, 1995, vol. 74, pp. 464–480.

    CAS  Google Scholar 

  4. Yanbaev, Yu.A., Shigapov, Z.Kh., Putenikhin, V.P., and Bakhtiyarova, R.M., Differentiation of populations of Siberian spruce, Picea obovata Ledeb., in the Southern Urals, Russ. J. Genet., 1997, vol. 33, no. 9, pp. 1060–1064.

    CAS  Google Scholar 

  5. Politov, D.V. and Krutovskii, K.V., Clinal variation and introgressive hybridization among populations of the Norway and Siberian spruce, in Zhizn’ populyatsii v geterogennoi srede (Populations in the Heterogenic Environment), Ioshkar-Ola: Periodika Marii-El, 1998, vol. 2, pp. 78–89.

    Google Scholar 

  6. Putenikhin, V.P., Shigapov, Z.Kh., and Farukshina, G.G., El’ sibirskaya na Yuzhnom Urale i v Bashkirskom Predural’e (populyatsionno-geneticheskaya struktura) (Siberian Spruce in the Southern Urals and the Bashkirian Cisurals (Population Genetic Structure)), Moscow: Nauka, 2005.

    Google Scholar 

  7. Shigapov, Z.Kh., Intraspecific variation and differentiation of species of the Pinaceae family in the Urals, Extended Abstract of Doctoral Dissertation, Permskii Gosudarstvennyi Universitet, Perm, 2005.

    Google Scholar 

  8. Goncharenko, G.G. and Potenko, V.V., Parameters of genetic variation and differentiation in the populations of Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (Picea obovata Ledeb.), Genetika (Moscow), 1991, vol. 27, no. 10, pp. 1759–1772.

    Google Scholar 

  9. Larionova, A.Ya., Inheritance of allozyme variants in Siberian spruce (Picea obovata Ledeb.), Genetika (Moscow), 1995, vol. 31, no. 9, pp. 1261–1267.

    Google Scholar 

  10. Goncharenko, G.G. and Padutov, V.E., Populyatsionnaya i evolyutsionnaya genetika elei palearktiki (Population and Evolutional Genetics of Palearctic Spruces), Gomel’: Inst. Lesa Nats. Akad. Navuk Belarus, 2001.

    Google Scholar 

  11. Potenko, V.V., Isozyme polymorphism and phylogenetic interrelations of conifer species of the Russian Far East, Extended Abstract of Doctoral Dissertation, Biol.Pochvennei Inst. Dalnevost. Otd. Ross. Akad. Nauk, Vladivostok, 2004.

    Google Scholar 

  12. Larionova, A.Ya., Kravchenko, A.N., Ekart, A.K., and Oreshkova, N.V., Genetic diversity and differentiation of populations of coniferous forest forming species in Central Siberia, in Khvoinye Boreal’noi Zony, 2007, vol. 24, nos. 2–3, pp. 235–242.

    Google Scholar 

  13. Kravchenko, A.N., Larionova, A.Ya., and Milyutin, L.I., Genetic polymorphism of Siberian spruce (Picea obovata Ledeb.) in Middle Siberia, Russ. J. Genet., 2008, vol. 44, no. 1, pp. 35–43.

    Article  CAS  Google Scholar 

  14. Kravchenko, A.N., Ekart, A.K., and Larionova, A.Ya., Allozyme diversity and differentiation of spruce populations in the Western Trans-Baikal and Mongolia, Khvoinye Boreal’noi Zony, 2012, vol. 30, nos. 1–2, pp. 97–101.

    Google Scholar 

  15. Kravchenko, A.N., Larionova, A.Ya., and Ekart, A.K., Genetic polymorphism of Siberian spruce Picea obovate (Pinaceae) populations in the Asian part of distribution area, Vestn. Sev.-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, 2013, no. 2, pp. 74–95.

    Google Scholar 

  16. Politov, D.V., Kravchenko, A.N., Belokon’, M.M., et al., Genetic differentiation of Siberian spruce (Picea obovata Ledeb.) at allozyme loci, in Sokhranenie lesnykh geneticheskikh resursov Sibiri (Conservation of Forest Genetic Resources in Siberia) (Proc. 3rd Int. Conf.), Krasnoyarsk: Institut Lesa im. V.N. Sukacheva Sib. Otd. Ross. Akad. Nauk, 2011, pp. 97–98.

    Google Scholar 

  17. Neale, D.B. and Sederoff, R.R., Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine, Theor. Appl. Genet., 1989, vol. 77, no. 2, pp. 212–216.

    Article  CAS  PubMed  Google Scholar 

  18. Mogensen, H.L., The hows and whys of cytoplasmic inheritance in seed plants, Am. J. Bot., 1996, vol. 83, pp. 383–404.

    Article  Google Scholar 

  19. Mudrik, E.A., Politov, D.V., Belokon’, M.M., and Privalikhin, S.N., The genetic variation of spruce according to microsatellite loci data, in Biosfera Zemli: proshloe, nastoyashchee i budushchee (Biosphere of the Earth: Past, Present and Future) (Proc. Conf. Young Sci. Yekaterinburg, 2008), Yekaterinburg: Goshchitskii, 2008, pp. 154–157.

    Google Scholar 

  20. Tollefsrud, M.M. and Sperisen, Ch., Paternal introgression from Siberian spruce to Norway spruce (Picea abies): Tracing pollen and seed flow with chloroplast and mitochondrial DNA, in Conservation of Forest Genetic Resources in Siberia: Proc. of 3rd Int. Conf. (August 23–29, 2011), Krasnoyarsk, 2011, p. 162.

    Google Scholar 

  21. Melnikova, M.N., Petrov, N.B., Lomov, A.A., la Porta, N., and Politov, D.V., Testing of microsatellite primers with different populations of Eurasian spruces Picea abies (L.) Karst. and Picea obovata Ledeb., Russ. J. Genet., 2012, vol. 48, no. 5, pp. 562–566.

    Article  CAS  Google Scholar 

  22. Potokina, E.K., Orlova, L.V., Vishnevskaya, M.S., et al., Genetic differentiation of spruce populations in northwest Russia according to the results of microsatellite loci analysis, Ekol. Genet., 2012, vol. 10, no. 2, pp. 40–49.

    Google Scholar 

  23. Vendramin, G.G., Anzidei, M., Madaghiele, A., et al., Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.), Genome, 2000, vol. 43, pp. 68–78.

    Article  CAS  PubMed  Google Scholar 

  24. Gugerli, F., Senn, J., Anzidei, M., et al., Chloroplast microsatellites and mitochondrial nad 1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila), Mol. Ecol., 2001, vol. 10, pp. 1489–1497.

    CAS  PubMed  Google Scholar 

  25. Hansen, O.K., Kjær, E.D., and Vendramin, G.G., Chloroplast microsatellite variation in Abies nordmanniana and simulation of causes for low differentiation among populations, Tree Genet. Genomes, 2005, vol. 1, pp. 116–123.

    Article  Google Scholar 

  26. Polezhaeva, M.A., Semerikov, V.L., and Pimenova, E.A., Genetic diversity of larch at the north of Primorskii Krai and limits of Larix olgensis A. Henry distribution, Russ. J. Genet., 2013, vol. 49, no. 5, pp. 497–502.

    Article  CAS  Google Scholar 

  27. Semerikov, V.L., Semerikova, S.A., Dymshakova, O.S., et al., Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and eastern Europe, Russ. J. Genet., 2014, vol. 50, no. 6, pp. 577–585.

    Article  CAS  Google Scholar 

  28. Semerikova, S.A., Semerikov, V.L., Molecular phylogenetic analysis of the genus Abies Mill. (Pinaceae) based on the chloroplast DNA nucleotide sequences, Russ. J. Genet., 2014, vol. 50, no. 1, pp. 7–19.

    Article  CAS  Google Scholar 

  29. Mochalova, O.A. and Andrianova, E.A., On the isolated localities of Picea obovata (Pinaceae) of the North-Eastern Asia, Bot. Zh., 2004, vol. 89, no. 12, pp. 1823–1840.

    Google Scholar 

  30. Manchenko, G.P., Handbook of Detection of Enzymes on Electrophoretic Gels, G.P. CRC, 1994.

    Google Scholar 

  31. Wright, S., The interpretation of population structure of F-statistics with special regard to systems of mating, Evolution, 1965, vol. 19, pp. 395–420.

    Article  Google Scholar 

  32. Weir, B.S. and Cockerham, C.C., Estimating F-statistic for the analysis of population structure, Evolution, 1984, vol. 38, pp. 1358–1370.

    Article  Google Scholar 

  33. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  34. Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1976, vol. 27, pp. 209–220.

    Google Scholar 

  35. Peakall, R. and Smouse, P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295.

    Article  Google Scholar 

  36. Devey, M.E., Bell, J.C., Smith, D.N., et al., A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, no. 6, pp. 673–679.

    Article  CAS  PubMed  Google Scholar 

  37. Vendramin, G.G., Lelli, L., Rossi, P., and Morgante, M., A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae, Mol. Ecol., 1996, vol. 5, pp. 111–114.

    Article  Google Scholar 

  38. Semerikova, S.A. and Semerikov, V.L., The diversity of chloroplast microsatellite loci in Siberian fir (Abies sibirica Ledeb.) and two Far East fir species A. nephrolepis (Trautv.) Maxim. and A. sachalinensis Fr. Schmidt, Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1373–1381.

    Article  CAS  Google Scholar 

  39. Wakasugi, T., Tsudzuki, J., Ito, S., et al., Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 9794–9798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bucci, G. and Vendramin, G.G., Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence, Mol. Ecol., 2000, vol. 9, pp. 923–934.

    Article  CAS  PubMed  Google Scholar 

  41. Scotti, I., Gugerli, F., Pastorelli, R., et al., Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies (L.) Karst.), For. Ecol. Manage., 2008, vol. 255, pp. 3806–3812.

    Article  Google Scholar 

  42. Excoffier, L., Laval, G., and Schneider, S., ARLEQUIN ver. 3.1: An Integrated Software Package for Population Genetics Data Analysis. Computational and Molecular Population Genetics Lab (CMPG), Bern: Institute of Zoology, University of Bern, 2006.

    Google Scholar 

  43. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  44. Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, L.L., and Feldman, M.W., An evaluation of genetic distances for use with microsatellite loci, Genetics, 1995, vol. 139, pp. 463–471.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ekart.

Additional information

Original Russian Text © A.K. Ekart, S.A. Semerikova, V.L. Semerikov, A.Ya. Larionova, A.N. Kravchenko, O.S. Dymshakova, 2016, published in Genetika, 2016, Vol. 52, No. 3, pp. 311–319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekart, A.K., Semerikova, S.A., Semerikov, V.L. et al. Variability of allozyme and cpSSR markers in the populations of Siberian spruce. Russ J Genet 52, 273–280 (2016). https://doi.org/10.1134/S1022795416030054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416030054

Keywords

Navigation