Skip to main content
Log in

Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and eastern Europe

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The variability of four microsatellite loci of chloroplast DNA was studied in 38 populations of Pinus sylvestris in the European part of Russia, in Siberia, Kazakhstan, Transbaikalia and Mongolia. High variability was observed in all regions. In total, 152 haplotypes were identified. The level of population differentiation R ST was 2.1%. The differentiation of three geographical groups of populations (European, Siberian-Kazakhstan and Transbaikalian-Mongolian) was insignificant (R CT = 0.004). At the same time, some rare haplotypes were found to be specific for a certain geographical region. Distribution of the rare haplotypes, which differentiated European populations from Asian populations and Mongolian and Transbaikalian populations from the Siberian, showed the independence of the history of these regions. This corresponds more to the hypothesis that the modern area of Pinus sylvestris originated via settlement from many origins than to the hypothesized single center of the post-glacial recolonization. The distribution of the pairwise differences between the individual specimens corresponded to the model of sudden population growth. The assessments of the age of this event for Pinus sylvestris (4.5–4.7 million years), which were obtained on the basis of this model, significantly exceeded the age of the Quaternary. Therefore, the revealed population growth is hardly due to the changes in flora related with the glaciation, but rather mirrors the moment of the species formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hewitt, G., The genetic legacy of the Quaternary ice ages, Nature, 2000, vol. 405, pp. 907–913.

    Article  CAS  PubMed  Google Scholar 

  2. Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., et al., Glacial refugia: hotspot but not melting pots of genetic diversity, Science, 2003, vol. 300, pp. 1563–1565.

    Article  CAS  PubMed  Google Scholar 

  3. Lascoux, M., Palme, A.E., Cheddadi, R., and Latta, R.G., Impact of ice ages on the genetic structure of trees and shrubs, Philos. Trans. R. Soc., B, 2004, vol. 359, pp. 197–207.

    Article  Google Scholar 

  4. Semerikov, V.L., Iroshnikov, A.I., and Lasko, M., Mitochondrial DNA variation pattern and postglacial history of the Siberian larch (Larix sibirica Ledeb.), Russ. J. Ecol., 2007, vol. 38, no. 3, pp. 147–154.

    Article  Google Scholar 

  5. Semerikova, S.A. and Semerikov, V.L., Genetic variation and population differentiation in Siberian fir Abies sibirica Ledeb. inferred from allozyme markers, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 636–644.

    Article  CAS  Google Scholar 

  6. Semerikova, S.A. and Semerikov, V.L., The diversity of chloroplast microsatellite loci in Siberian fir (Abies sibirica Ledeb.) and two Far East fir species A. nephrolepis (Trautv.) Maxim. and A. sachalinensis Fr. Schmidt, Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1373–1381.

    Article  CAS  Google Scholar 

  7. Krutovskii, K. and Bergmann, F., Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci, Heredity, 1995, vol. 74, pp. 464–480.

    Article  CAS  Google Scholar 

  8. Sannikov, S.N., Sannikova, N.S., and Petrova, I.V., Ocherk po teorii lesnoi populyatsionnoi biologii (Essay on the Theory of Forest Population Biology), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2012.

    Google Scholar 

  9. Neishtadt, M.I., Istoriya lesov i paleogeografiya SSSR v golotsene (History of forests and paleogeography of the Soviet Union in the Holocene), Moscow: Akad. Nauk, 1957.

    Google Scholar 

  10. Kremenetskii, K.V., Holocene history of distribution areas of principal conifer species in Siberia, in Korotkoperiodnye i rezkie landshaftno-klimaticheskie izmeneniya za poslednie 15000 let (Short-Term Periodic and Harsh Landscape and Climatic Changes over the Past 15000 Years), Moscow: Inst. Geografii Ross. Akad. Nauk, 1994, pp. 160–210.

    Google Scholar 

  11. Binney, A.H., Willis, K.J., Edwards, M.E., et al., The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database, Quat. Sci. Rev., 2009, vol. 28, pp. 2445–2464.

    Article  Google Scholar 

  12. Neale, D.B. and Sederoff, R.R., Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine, Theor. Appl. Genet., 1989, vol. 77, pp. 212–216.

    Article  CAS  PubMed  Google Scholar 

  13. Naydenov, K., Senneville, S., Beaulieu, J., et al., Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor, BMC Evol. Biol., 2007, vol. 22, pp. 7–233.

    Google Scholar 

  14. Pyhäjärvi, T., Salmela, M., and Savolainen, O., Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation, Tree Genet. Genom., 2008, no. 4, pp. 247–254.

    Google Scholar 

  15. Vidyakin, A.I., Semerikov, V.L., Polezhaeva, M.A., and Dymshakova, O.S., Spread of mitochondrial DNA haplotypes in population of Scots pine (Pinus sylvestris L.) in northern European Russia, Russ. J. Genet., 2012, vol. 48, no. 12, pp. 1267–1271.

    Article  CAS  Google Scholar 

  16. Provan, J., Soranzo, N., Wilson, N.J., et al., A low mutation rate for chloroplast microsatellites, Genetics, 1999, vol. 153, pp. 953–947.

    Google Scholar 

  17. Walter, R. and Epperson, B.K., Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations, Mol. Ecol., 2001, vol. 10, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  18. Vendramin, G.G., Fady, B., Gonzalez-Martinez, S.C., et al., Genetically depauperate but widespread: the case of an emblematic Mediterranean pine, Evolution, 2008, vol. 62, no. 3, pp. 680–688.

    Article  PubMed  Google Scholar 

  19. Devey, M.E., Bell, J.C., Smith, D.N., et al., A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, pp. 673–679.

    Article  CAS  PubMed  Google Scholar 

  20. Vendramin, G.G., Lelli, L., Rossi, P., and Morgante, M., A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae, Mol. Ecol., 1996, vol. 5, pp. 111–114.

    Article  Google Scholar 

  21. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  22. El Mousadik, A. and Petit, R.J., High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Sceels) endemic to Morocco, Theor. App. Genet., 1996, vol. 92, pp. 832–839.

    Article  Google Scholar 

  23. Excoffier, L., Laval, G., and Schneider, S., ARLEQUIN ver. 3.1: An Integrated Software Package for Population Genetics Data Analysis, Computational and Molecular Population Genetics Lab (CMPG). Institute Zoology, Univ. Bern, Bern, Switzerland, 2006.

    Google Scholar 

  24. Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, L.L., Feldman, M.W., An evaluation of genetic distances for use with microsatellite loci, Genetics, 1995, vol. 139, pp. 463–471.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Pons, O. and Petit, R.J., Measuring and testing genetic differentiation with ordered versus unordered alleles, Genetics, 1996, vol. 144, pp. 1237–1245.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Rohlf E.J. Numerical Taxonomy and Multivariate Analysis System, New York: Exter Publ. LTD, 1988.

    Google Scholar 

  27. Dupanloup, I., Schneider, S., and Excoffier, L., A simulated annealing approach to define the genetic structure of populations, Mol. Ecol., 2002, vol. 11, pp. 2571–2581.

    Article  CAS  PubMed  Google Scholar 

  28. Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915–925.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Rogers, A.R. and Harpending, H., Population growth makes waves in the distribution of pairwise genetic differences, Mol. Biol. Evol., 1992, vol. 9, pp. 552–569.

    CAS  PubMed  Google Scholar 

  30. Navascués, M., Vaxevanidou, Z., González-Martínez, S.C., et al., Chloroplast microsatellites reveal colonization and metapopulation dynamics in the Canary Island pine, Mol. Ecol., 2006, vol. 15, pp. 2691–2698.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Provan, J., Soranzo, N., Wilson, N.J., et al., Gene-pool variation in Caledonian and European Scots pine (Pinus sylvestris L.) revealed by chloroplast simple-sequence repeats, Proc. R. Soc. London, Ser. B, 1998, vol. 265, no. 1407, pp. 1697–1705.

    Article  CAS  Google Scholar 

  32. Robledo-Arnuncio, J.J., Collada, C., Alia, R., and Gil, L., Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area, J. Biogeogr., 2005, vol. 32, no. 4, pp. 595–605.

    Article  Google Scholar 

  33. Bucci, G., Anzidei, M., Madaghiele, A., and Vendramin, G.G., Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers, Mol. Ecol., 1998, vol. 7, no. 12, pp. 1633–1643.

    Article  CAS  Google Scholar 

  34. Bucci, G., Gonzalez-Martinez, S.C., Le Provost, G., et al., Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers, Mol. Ecol., 2007, vol. 16, no. 10, pp. 2137–2153.

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez-Banderas, A., Vargas-Mendoza, C.F., Buonamici, A., and Vendramin, G.G., Genetic diversity and phylogeographic analysis of Pinus leiophylla: a post-glacial range expansion, J. Biogeogr., 2009, vol. 36, no. 9, pp. 1807–1820.

    Article  Google Scholar 

  36. Moreno-Letelier, A. and Pinero, D., Phylogeographic structure of Pinus strobiformis Engelm. across the Chihuahuan Desert filter-barrier, J. Biogeogr., 2009, vol. 36, no. 1, pp. 121–131.

    Article  Google Scholar 

  37. Wang, X.-R., Szmidt, A., and Lindgren, D., Allozyme differentiation among populations of Pinus sylvestris (L.) from Sweden and China, Hereditas, 1991, vol. 114, pp. 219–226.

    Article  Google Scholar 

  38. Semerikov, V.L., Podogas, A.V., and Shurkhal, A.V., Variability of allozyme loci in populations of common pine, Russian Journal of Ecology, 1993, vol. 24, no. 1, pp. 14–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Semerikov.

Additional information

Original Russian Text © V.L. Semerikov, S.A. Semerikova, O.S. Dymshakova, K.G. Zatsepina, V.V. Tarakanov, I.V. Tikhonova, A.K. Ekart, A.I. Vidyakin, S. Jamiyansuren, R.V. Rogovtsev, L.I. Kalchenko, 2014, published in Genetika, 2014, Vol. 50, No. 6, pp. 660–669.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerikov, V.L., Semerikova, S.A., Dymshakova, O.S. et al. Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and eastern Europe. Russ J Genet 50, 577–585 (2014). https://doi.org/10.1134/S1022795414040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414040127

Keywords

Navigation