Skip to main content
Log in

Mutation induction in the mouse and human germline

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review describes the effects of exposure to mutagens on mutation induction in human and mouse germlines. The results of studies that evaluated inductions of mutations in human families subjected to irradiation are presented and discussed. The effects of exposure to mutagens on mutation induction in the mouse germline are also considered. We analyze and discuss the recent data on the genome-wide effects of irradiation on mutation induction in the mouse germline obtained by next-generation sequencing and comparative genome hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller, H.J., Artificial transmutation on the gene, Science, 1927, vol. 46, pp. 84–87.

    Article  Google Scholar 

  2. Timofeeff-Ressovky, N.W., Zimmer, K.G., and Delbrück, M., Über die Natur der Genmutation und der Genstruktur, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Fachgrupp. 4, 1935, vol. 1, no. 13, pp. 189–245.

    Google Scholar 

  3. Campbell, C.D. and Eichler, E.E., Properties and rates of germline mutations in humans, Trends Genet., 2013, vol. 29, pp. 575–584. doi 10.1016/j.tig.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kong, A., Frigge, M.L., Masson, G., et al., Rate of de novo mutations and the importance of father’s age to disease risk, Nature, 2012, vol. 488, pp. 471–475. doi 10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adewoye, A.B., Lindsay, S.J., Dubrova, Y.E., and Hurles, M.E., The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline, Nat. Commun., 2015, vol. 6, p. 6684. doi 10.1038/ncomms7684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uchimura, A., Higuchi, M., Minakuchi, Y., et al., Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice, Genome Res., 2015, vol. 25, pp. 1125–1134. doi 10.1101/gr.186148.114

    Article  CAS  PubMed  Google Scholar 

  7. Redon, R., Ishikawa, S., Fitch, K.A., et al., Global variation in copy number in the human genome, Nature, 2006, vol. 444, pp. 444–454. doi 10.1038/nature05329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lupski, J.R., Genomic rearrangements and sporadic disease, Nat. Genet., 2007, vol. 39, pp. S43–S47.

    Article  CAS  PubMed  Google Scholar 

  9. Hassold, T. and Hunt, P., To err (meiotically) is human: the genesis of human aneuploidy, Nat. Rev. Genet., 2001, vol. 2, pp. 280–291.

    Article  CAS  PubMed  Google Scholar 

  10. Stewart, C., Kural, D., Strömberg, M.P., et al., A comprehensive map of mobile element insertion polymorphism in humans, PLoS Genet., 2011, vol. 7. e1002236. doi 10.1371/journal.pgen.1002236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otake, M., Schull, W.J., and Neel, J.V., Congenital malformations, stillbirths and early mortality among the children of atomic bomb survivors: a reanalysis, Radiat. Res., 1990, vol. 122, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Byrne, J., Rasmussen, S.A., Steinhorn, S.C., et al., Genetic diseases in offspring of long-term survivors of childhood and adolescent cancer, Am. J. Hum. Genet., 1998, vol. 62, pp. 45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dubrova, Yu.E., Radiation and mutation induction in the human germline, Radiats. Biol., Radioekol., 2006, vol. 46, no. 5, pp. 537–546.

    Google Scholar 

  14. Speicher, M.R., Antonarakis, S.E., and Motulsky, A.G., Vogel and Motulsky’s Human Genetics: Problems and Approaches, Berlin: Springer-Verlag, 2009, 4th ed.

    Google Scholar 

  15. Neel, J.V., Satoh, C., Smouse, P., et al., Protein variants in Hiroshima and Nagasaki: tales of two cities, Am. J. Hum. Genet., 1988, vol. 43, pp. 870–893.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Neel, J.V., Satoh, C., Goriki, K., et al., Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report, Am. J. Hum. Genet., 1988, vol. 42, pp. 663–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kodaira, M., Satoh, C., Hiyama, K., and Toyama, K., Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells, Am. J. Hum. Genet., 1995, vol. 57, pp. 1275–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Human minisatellite mutation rate after the Chernobyl accident, Nature, 1996, vol. 380, pp. 683–686. doi 10.1038/380683a0

    Article  CAS  PubMed  Google Scholar 

  19. Vergnaud, G. and Denoeud, F., Minisatellites: mutability and genome architecture, Genome Res., 2000, vol. 10, pp. 899–907. doi 10.1101/gr.10.7.899

    Article  CAS  PubMed  Google Scholar 

  20. Jeffreys, A.J., Neil, D.L., and Neumann, R., Repeat instability at human minisatellites arising from meiotic recombination, EMBO J., 1998, vol. 17, pp. 4147–4157. doi 10.1093/emboj/17.14.4147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident, Mutat. Res., 1997, vol. 381, pp. 267–278. doi 10.1016/S0027-5107(97)00212-1

    Article  CAS  PubMed  Google Scholar 

  22. Dubrova, Y.E., Grant, G., Chumak, A.A., et al., Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine, Am. J. Hum. Genet., 2002, vol. 71, pp. 801–809. doi 10.1086/342729

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dubrova, Y.E., Bersimbaev, R.I., Djansugurova, L.B., et al., Nuclear weapons tests and human germline mutation rate, Science, 2002, vol. 295, p. 1037. doi 10.1126/science.1068102

    Article  CAS  PubMed  Google Scholar 

  24. Dubrova, Y.E., Ploshchanskaya, O.G., Kozionova, O.S., and Akleyev, A.V., Minisatellite germline mutation rate in the Techa River population, Mutat. Res., 2006, vol. 602, pp. 74–82. doi 10.1016/j.mrfmmm.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Kodaira, M., Ryo, H., Kamada, N., et al., No evidence of increased mutation rates at microsatellite loci in offspring of A-bomb survivors, Radiat. Res., 2010, vol. 173, pp. 205–213. doi 10.1667/RR1991.1

    Article  CAS  PubMed  Google Scholar 

  26. Kiuru, A., Auvinen, A., Luokkamäki, M., et al., Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers, Radiat. Res., 2003, vol. 159, pp. 651–655. doi http://dx.doi.org/10.1667/0033-7587(2003)159[0651:HMMATO]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  27. Livshits, L.A., Malyarchuk, S.G., Kravchenko, S.A., et al., Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles, Radiat. Res., 2001, vol. 155, pp. 74–80. doi http://dx. doi.org/10.1667/0033-7587(2001)155[0074:COCCWD]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  28. May, C.A., Tamaki, K., Neumann, R., et al., Minisatellite mutation frequency in human sperm following radiotherapy, Mutat. Res., 2000, vol. 453, pp. 67–75. doi 10.1016/S0027-5107(00)00085-3

    Article  CAS  PubMed  Google Scholar 

  29. Tawn, E.J., Rees, G.S., Leith, C., et al., Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation, Int. J. Radiat. Biol., 2011, vol. 87, pp. 330–340. doi 10.3109/09553002.2011.530338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tawn, E.J., Curwen, G.B., Rees, G.S., and Jonas, P., Germline minisatellite mutations in workers occupationally exposed to radiation at the Sellafield nuclear facility, J. Radiol. Prot., 2015, vol. 35, pp. 21–36. doi 10.1088/0952-4746/35/1/21

    Article  PubMed  Google Scholar 

  31. UNSCEAR, Hereditary Effects of Radiation, New York: United Nations, 2001.

  32. Snell, G.D., The induction by X-rays of hereditary changes in mice, Genetics, 1935, vol. 20, pp. 545–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Charles, R.D., Radiation-induced mutations in mammals, Radiology, 1950, vol. 55, pp. 579–581.

    Article  CAS  PubMed  Google Scholar 

  34. Russell, L.B., The mouse house: a brief history of the ORNL mouse–genetics program, 1947–2009, Mutat. Res., 2013, vol. 732, pp. 69–90. doi 10.1016/ j.mrrev.2013.08.003

    Article  Google Scholar 

  35. Rader, K.A., Alexander Hollander’s postwar vision for biology: Oak Ridge and beyond, J. Hist. Biol., 2006, vol. 39, pp. 685–706. doi 10.1007/s10739-006-9109-1

    Article  Google Scholar 

  36. Davis, A.P. and Justice, M.J., An Oak Ridge legacy: the specific locus test and its role in mouse mutagenesis, Genetics, 1998, vol. 148, pp. 7–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Searle, A.G., Mutation induction in mice, Adv. Radiat. Biol., 1974, vol. 4, pp. 131–207.

    Article  Google Scholar 

  38. Russell, W.L. and Kelly, E.M., Specific-locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 539–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Russell, W.L. and Kelly, E.M., Mutation frequencies in male mice and the estimation of genetic hazard of radiation in men, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 542–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Russell, W.L., Hunsicker, P.R., Raymer, G.D., et al., Dose-response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 3589–3591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russell, W.L., Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, pp. 3523–3527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. UNSCEAR, Sources and Effects of Ionizing Radiation, annex E: Occupational Radiation Exposures, New York: United Nations, 2000.

  43. UNSCEAR, Sources and Effects of Ionizing Radiation, annex D: Medical Radiation Exposures, New York: United Nations, 2000.

  44. UNSCEAR, Sources and Effects of Ionizing Radiation, annex J: Exposures and Effects of the Chernobyl Accident, New York: United Nations, 2000.

  45. Yauk, C.L., Aardema, M.J., van Benthem, J., et al., Approaches for identifying germ cell mutagens: report of the 2013 IWGT Workshop on Germ Cell Assays, Mutat. Res., 2015, vol. 783, pp. 36–54. http://dx.doi.org/10.1016/j.mrgentox.2015.01.008

    Article  CAS  Google Scholar 

  46. Ehling, U.H., Genetic risk assessment, Ann. Rev. Genet., 1991, vol. 25, pp. 255–280.

    Article  CAS  PubMed  Google Scholar 

  47. OECD, Detailed Review of Transgenic Rodent Gene Mutation Assays, no. 103: Series on Testing and Assessment, ENV/JM/MONO(2009)7, Paris: OECD, 2009.

  48. Nelson, S.L., Giver, C.R., and Grosovsky, A.J., Spectrum of X-ray-induced mutations in the human hprt gene, Carcinogenesis, 1994, vol. 15, pp. 495–502. doi 10.1093/carcin/15.3.495

    Article  CAS  PubMed  Google Scholar 

  49. Giver, C.R., Nelson, S.L., Cha, M.Y., et al., Mutational spectrum of X-ray induced TK human cell mutants, Carcinogenesis, 1995, vol. 16, pp. 267–275. doi 10.1093/carcin/16.2.267

    Article  CAS  PubMed  Google Scholar 

  50. Russell, L.B., Effects of male germ-cell stage on the frequency, nature, and spectrum of induced specificlocus mutations in the mouse, Genetics, 2004, vol. 122, pp. 23–36. doi 10.1007/s10709-004-1443-7

    Google Scholar 

  51. Dubrova, Y.E., Jeffreys, A.J., and Malashenko, A.M., Mouse minisatellite mutations induced by ionizing radiation, Nat. Genet., 1993, vol. 5, pp. 92–94. doi 10.1038/ng0993-92

    Article  CAS  PubMed  Google Scholar 

  52. Bois, P., Williamson, J., Brown, J., et al., A novel unstable mouse VNTR family expanded from SINE B1 element, Genomics, 1998, vol. 49, pp. 122–128. doi 10.1006/geno.1998.5228

    Article  CAS  PubMed  Google Scholar 

  53. Hardwick, R.J., Tretyakov, M.V., and Dubrova, Y.E., Age-related accumulation of mutations supports a replication-dependent mechanism of spontaneous mutation at tandem repeat DNA loci in mice, Mol. Biol. Evol., 2009, vol. 26, pp. 2647–2654. doi 10.1093/molbev/msp182

    Article  CAS  PubMed  Google Scholar 

  54. Shanks, M., Riou, L., Fouchet, P., and Dubrova, Y.E., Stage-specificity of spontaneous mutation at a tandem repeat DNA locus in the mouse germline, Mutat. Res., 2008, vol. 641, pp. 58–60. doi 10.1016/j.mrfmmm.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  55. Sadamoto, S., Suzuki, S., Kamiya, K., et al., Radiation induction of germline mutation at a hypervariable mouse minisatellite locus, Int. J. Radiat. Biol., 1994, vol. 65, pp. 549–557.

    Article  CAS  PubMed  Google Scholar 

  56. Fan, Y.J., Wang, Z., Sadamoto, S., et al., Doseresponse of radiation induction of a germline mutation at a hypervariable mouse minisatellite locus, Int. J. Radiat. Biol., 1995, vol. 68, pp. 177–183.

    Article  CAS  PubMed  Google Scholar 

  57. Dubrova, Y.E., Plumb, M., Brown, J., et al., Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 6251–6255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dubrova, Y.E., Plumb, M., Brown, J., et al., Induction of minisatellite mutations in the mouse germline by low-dose chronic exposure to ?-radiation and fission neutrons, Mutat. Res., 2000, vol. 453, pp. 17–24. doi 10.1016/S0027-5107(00)00068-3

    Article  CAS  PubMed  Google Scholar 

  59. Barber, R., Plumb, M.A., Smith, A.G., et al., No correlation between germline mutation at repeat DNA and meiotic crossover in male mice exposed to X-rays or cisplatin, Mutat. Res., 2000, vol. 457, pp. 79–91. doi 10.1016/S0027-5107(00)00130-5

    Article  CAS  PubMed  Google Scholar 

  60. Dubrova, Y.E., Radiation-induced mutation at tandem repeat DNA loci in the mouse germline: spectra and doubling doses, Radiat. Res., 2005, vol. 163, pp. 200–207. doi http://dx.doi.org/10.1667/RR3296

    Article  CAS  PubMed  Google Scholar 

  61. Barber, R.C., Hardwick, R.J., Shanks, M.E., et al., The effects of in utero irradiation on mutation induction and transgenerational instability in mice, Mutat. Res., 2009, vol. 664, pp. 6–12. doi 10.1016/j.mrfmmm.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  62. Abouzeid Ali, H.E., Barber, R.C., and Dubrova, Y.E., The effects of maternal irradiation during adulthood on mutation induction and transgenerational instability in mice, Mutat. Res., 2012, vol. 732, pp. 21–25. doi 10.1016/j.mrfmmm.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  63. Mughal, S.K., Myazin, A.E., Zhavoronkov, L.P., et al., The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection, PLoS One, 2012, vol. 7. e41300. doi 10.1371/journal.pone.0041300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vilarino-Guell, C., Smith, A.G., and Dubrova, Y.E., Germline mutation induction at mouse repeat DNA loci by chemical mutagens, Mutat. Res., 2003, vol. 526, pp. 63–73. doi 10.1016/S0027-5107(03)00016-2

    Article  CAS  PubMed  Google Scholar 

  65. Glen, C.D., Smith, A.G., and Dubrova, Y.E., Singlemolecule PCR analysis of germ line mutation induction by anticancer drugs in mice, Cancer Res., 2008, vol. 68, pp. 3630–3636. doi 10.1158/0008-5472.CAN08-0484

    Article  CAS  PubMed  Google Scholar 

  66. Yauk, C.L., Berndt, M.L., Williams, A., et al., Mainstream tobacco smoke causes paternal germ-line DNA mutation, Cancer Res., 2007, vol. 67, pp. 5103–5106. doi 10.1158/0008-5472.CAN-07-0279

    Article  CAS  PubMed  Google Scholar 

  67. Ritz, C., Ruminski, W., Hougaard, K.S., et al., Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation, Mutat. Res., 2011, vol. 712, pp. 55–58. doi 10.1016/j.mrfmmm.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  68. Somers, C.M., Yauk, C.L., White, P.A., et al., Air pollution induces heritable DNA mutations, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 15904–15907. doi 10.1073/pnas.252499499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Somers, C.M., McCarry, B.E., Malek, F., et al., Reduction of particulate air pollution lowers the risk of heritable mutations in mice, Science, 2004, vol. 304, pp. 1008–1010. doi 10.1126/science.1095815

    Article  CAS  PubMed  Google Scholar 

  70. Yauk, C., Polyzos, A., Rowan-Carroll, A., et al., Germline mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 605–610. doi 10.1073/pnas. 0705896105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boisen, A.M., Shipley, T., Jackson, P., et al., In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells, Reprod. Toxicol., 2013, vol. 41, pp. 45–48. doi 10.1016/j.reprotox.2013.06.068

    Article  CAS  PubMed  Google Scholar 

  72. Voutounou, M., Glen, C.D., and Dubrova, Y.E., The effects of methyl-donor deficiency on mutation induction and transgenerational instability in mice, Mutat. Res., 2012, vol. 734, pp. 1–4. doi 10.1016/j.mrfmmm.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  73. Wilson, J.W., Haines, J., Sienkiewicz, Z., and Dubrova, Y.E., The effects of extremely low frequency magnetic fields on mutation induction in mice, Mutat. Res., 2015, vol. 773, pp. 22–26. doi 10.1016/j.mrfmmm.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  74. Bouffler, S.D., Bridges, B.A., Cooper, D.N., et al., Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers, Radiat. Res., 2006, vol. 165, pp. 249–268. doi http://dx.doi.org/10.1667/RR3506.1

    Article  CAS  PubMed  Google Scholar 

  75. Singer, T.M. and Yauk, C.L., Germ cell mutagens: risk assessment challenges in the 21st century, Environ. Mol. Mutagen., 2010, vol. 51, pp. 919–928. doi 10.1002/em.20613

    Article  CAS  PubMed  Google Scholar 

  76. Witt, K.L. and Bishop, J.B., Mutagenicity of anticancer drugs in mammalian germ cells, Mutat. Res., 1996, vol. 355, pp. 209–234.

    Article  PubMed  Google Scholar 

  77. Barber, R.C., Miccoli, L., van Buul, P.P.W., and Burr, K.L-A., et al., Germline mutation rates at tandem repeat loci in DNA-repair deficient mice, Mutat. Res., 2004, vol. 554, pp. 287–295. doi 10.1016/j.mrfmmm.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  78. Lander, E.S., Linton, L.M., Birren, B., et al., International human genome sequencing, initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, pp. 860–921. doi 10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  79. Waterston, R.H., Lindblad-Toh, K., Birney, E., et al., Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, pp. 520–562. doi 10.1038/nature01262

    Google Scholar 

  80. Metzker, M.L., Sequencing technologies—the next generation, Nat. Rev. Genet., 2010, vol. 11, pp. 31–46. doi 10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  81. Frankenberg-Schwager, M., Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells, Radiat. Environ. Biophys., 1990, vol. 29, pp. 273–292.

    Article  CAS  PubMed  Google Scholar 

  82. Friedberg, E.C., Walker, G.C., Siede, W., et al., DNA Repair and Mutagenesis, Washington: ASM Press, 2006, 2nd ed.

    Google Scholar 

  83. Cooper, G.M., Coe, B.P., Girirajan, S., et al., A copy number variation morbidity map of developmental delay, Nat. Genet., 2011, vol. 14, pp. 838–846. doi 10.1038/ng.909

    Article  Google Scholar 

  84. Girirajan, S., Rosenfeld, A.J., Coe, B.P., et al., Phenotypic heterogeneity of genomic disorders and rare copynumber variants, N. Engl. J. Med., 2012, vol. 367, pp. 1321–1331. doi 10.1056/NEJMoa1200395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., et al., CNVs conferring risk of autism or schizophrenia affect cognition in controls, Nature, 2014, vol. 505, pp. 361–366. doi 10.1038/nature12818

    Article  CAS  PubMed  Google Scholar 

  86. Lindahl, T. and Anderson, B., Repair of endogenous DNA damage, Cold Spring Harbor Symp. Quant. Biol., 2000, vol. 65, pp. 127–133.

    Article  CAS  PubMed  Google Scholar 

  87. Eccles, L.J., O’Neill, P., and Lomax, M.E., Delayed repair of radiation induced clustered damage: friend or foe?, Mutat. Res., 2011, vol. 711, pp. 134–141. doi 10.1016/j.mrfmmm.2010.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goodhead, D.T., Spatial and temporal distribution of energy, Health Phys., 1988, vol. 55, pp. 231–240.

    Article  CAS  PubMed  Google Scholar 

  89. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., et al., Signatures of mutational processes in human cancer, Nature, 2013, vol. 500, pp. 415–421. doi 10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Dubrova.

Additional information

Original Russian Text © Yu.E. Dubrova, 2016, published in Genetika, 2016, Vol. 52, No. 1, pp. 24–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrova, Y.E. Mutation induction in the mouse and human germline. Russ J Genet 52, 17–28 (2016). https://doi.org/10.1134/S1022795416010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416010038

Keywords

Navigation