Skip to main content
Log in

Characteristics of natural selection in populations of nodule bacteria (Rhizobium leguminosarum) interacting with different host plants

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using high throughput sequencing of the nodA gene, we studied the population dynamics of Rhizobium leguminosarum (bv. viciae, bv. trifolii) in rhizospheric and nodular subpopulations associated with the leguminous plants representing different cross-inoculation groups (Vicia sativa, Lathyrus pratensis of the vetch/vetchling/pea group and Trifolium hybridum of the clover group). The “rhizosphere → nodules” transitions result in either an increase or decrease in the frequencies of 10 of the 23 operational taxonomic units (OTUs) (which were identified with 95% similarity) depending on the symbiotic specificity and phylogenetic positions of OTUs. Statistical and bioinformatical analysis of the population structures suggest that the type of natural selection responsible for these changes may be diversifying at the whole-population level and frequency-dependent at the OTU-specific level, ensuring the divergent evolution of rhizobia interacting with different host species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Evolutionary Genetics of Plant–Microbe Symbiosis), Tikhonovich, I.A., Ed., St. Petersburg: Inform-Navigator, 2012.

    Google Scholar 

  2. Wang, D., Yang, S., Tang, F., and Zhu, H., Symbiosis specificity in the legume-rhizobial mutualism, Cell. Microbiol., 2012, vol. 14, no. 3, pp. 334–342.

    Article  PubMed  Google Scholar 

  3. Provorov, N.A., Tsyganova, A.V., Brewin, N.J., et al., Evolution of symbiotic bacteria within the extraand intra-cellular plant compartments: experimental evidence and mathematical simulation (mini-review), Symbiosis, 2012, vol. 58, nos. 1–3, pp. 39–50.

    Article  Google Scholar 

  4. Andronov, E.E., Onishchuk, O.P., Kurchak, O.N., and Provorov, N.A., Population structure of the clover rhizobia Rhizobium leguminosarum bv. trifolii upon transition from soil into the nodular niche, Microbiology (Moscow), 2014, vol. 83, no. 4, pp. 422–429.

    Article  CAS  Google Scholar 

  5. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, no. 4, pp. 583–590.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Selander, R.K., Caugant, D.A., Ochman, H., et al., Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics, Appl. Environ. Microbiol., 1986, vol. 51, no. 5, pp. 873–884.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  8. Vorobyov, N.I. and Provorov, N.A., Simulation of legume–Rhizobium symbiosis evolution under multistrain competition among bacteria for inoculation of symbiotic niches, Ekol. Genet., 2008, vol. 6, no. 4, pp. 3–11.

    Google Scholar 

  9. Provorov, N.A. and Tikhonovich, I.A., Genetic and molecular bases of symbiotic adaptations, Usp. Sovrem. Biol., 2014, vol. 134, no. 3, pp. 211–226.

    Google Scholar 

  10. Shlaman, Kh., Fillips, D., and Kondoroshi, E., Genetic organization and transcriptional regulation of rhizobia genes controlling nodulation, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 389–416.

    Google Scholar 

  11. Guttman, D.S., Gropp, S.J., Morgan, R.L., and Wang, P.W., Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae, Mol. Biol. Evol., 2006, vol. 23, no. 12, pp. 2342–2354.

    Article  CAS  PubMed  Google Scholar 

  12. Timofeev-Resovskii, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (Short Essay on the Theory of Evolution), Moscow: Nauka, 1977.

    Google Scholar 

  13. Provorov, N.A., Andronov, E.E., Onishchuk, O.P., et al., Genetic structure of the introduced and local populations of Rhizobioum leguminosarum in plant–soil systems, Microbiology (Moscow), 2012, vol. 81, no. 2, pp. 224–232.

    Article  CAS  Google Scholar 

  14. Trotter, M.V. and Spencer, H.G., Frequency-dependent selection and the maintenance of genetic variation: exploring the parameter space of the multiallelic pairwise interaction model, Genetics, 2007, vol. 176, no. 3, pp. 1729–1740.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Friesen, M.L., Saxer, G., Travisano, M., and Doeveli, M., Experimental evidence for sympartric ecological diversification due to frequency-dependent competition in Escherichia coli, Evolution, 2004, vol. 58, no. 2, pp. 245–260.

    Article  PubMed  Google Scholar 

  16. Provorov, N.A. and Vorob’ev, N.I., Microevolution of nodule bacteria upon generation of mutants with altered survival in the plant–soil system, Russ. J. Genet., 2003, vol. 39, no. 12, pp. 1349–1359.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Provorov.

Additional information

Original Russian Text © E.E. Andronov, A.A. Igolkina, A.K. Kimeklis, N.I. Vorobyov, N.A. Provorov, 2015, published in Genetika, 2015, Vol. 51, No. 10, pp. 1108–1116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andronov, E.E., Igolkina, A.A., Kimeklis, A.K. et al. Characteristics of natural selection in populations of nodule bacteria (Rhizobium leguminosarum) interacting with different host plants. Russ J Genet 51, 949–956 (2015). https://doi.org/10.1134/S1022795415100026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415100026

Keywords

Navigation