Skip to main content
Log in

Genetic Diversity and Phylogeny of Root Nodule Bacteria Isolated from Nodules of Plants of the Lupinaster Genus Inhabiting the Southern Urals

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic diversity and phylogeny of root nodule bacteria, microsymbionts of plants of the genus Lupinaster Adans. (L. albus Link and L. pentaphyllus Moench), were studied, and also their symbiotic genes were analyzed. The bacterial strains studied were shown to be phylogenetically different; however, all of them are related to the Mezorhizobium genus with the exception of the single strain which is related to the Rhizobium genus. Analysis of the symbiotic genes nifH and nodC revealed their high homology among all strains independently of strain phylogeny, as well as the phylogenetic relation of these genes to those of Mezorhizobium. Mezorhizobium bacteria are likely specific microsymbionts of these plants, while the Rhizobium strain acquired its symbiotic genes and became capable of nodule formation in Lupinaster plants through horizontal gene transfer. Thus, the genetic composition of nodule bacteria inhabiting Lupinaster plants represents additional support for the idea that they do not belong to the Trifolium genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bobrov, E.G., Clover—Trifolium L., in Flora SSSR (Flora of the Soviet Union), Moscow: Akad. Nauk SSSR, 1945, vol. 11, pp. 189—261.

  2. Bobrov, E.G., Lupinaster Adans, in Flora evropeiskoi chasti SSSR (Flora of the European Part of the USSR), Leningrad: Nauka, 1987, vol. 6, pp. 208—209.

  3. Roskov, Yu.R., On the directions of evolution and the main taxonomic units in the Trifolium s. l. (Fabaceae) group, Bot. Zh., 1989, vol. 74, pp. 36—43.

    Google Scholar 

  4. Yakovlev, G.P., Bobovye zemnogo shara (Legumes of the Globe), Leningrad: Nauka, 1991.

  5. Polozhii, A.V., Vydrina, S.N., and Kurbatskii, V.I., Flora Sibiri: Fabaceae (Leguminosae) (Flora of Siberia: Fabaceae (Leguminosae)), Novosibirsk: Nauka, 1994.

  6. Bobrov, E.G., On the span of the genus Trifolium s. l., Bot. Zh., 1967, vol. 52, no. 11, pp. 1593—1599.

    Google Scholar 

  7. Mutch, L.A. and Young, J.P., Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes, Mol. Ecol., 2004, vol. 13, pp. 2435—2444. https://doi.org/10.1111/j.1365-294X.2004.02259.x

    Article  CAS  PubMed  Google Scholar 

  8. Roumiantseva, M.L., Andronov, E.E., Sharypova, L.A., et al., Diversity of Sinorhizobium meliloti from the Central Asian alfalfa gene center, Appl. Environ. Microbiol., 2002, vol. 68, pp. 4694—4697. https://doi.org/10.1128/AEM.68.9.4694-4697.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eardly, B., Elia, P., Brockwell, J., et al., Biogeography of a novel Ensifer meliloti clade associated with the Australian legume Trigonella suavissima, Appl. Environ. Microbiol., 2017, vol. 83. e03446-16. https://doi.org/10.1128/AEM.03446-16

    Article  PubMed  PubMed Central  Google Scholar 

  10. Andrews, M. and Andrews, M.E., Specificity in legume—rhizobia symbioses, Int. J. Mol. Sci., 2017, vol. 18, p. 705. https://doi.org/10.3390/ijms18040705

    Article  CAS  PubMed Central  Google Scholar 

  11. Bailly, X., Olivieri, I., Brunel, B., et al., Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species, J. Bacteriol., 2007, vol. 189, pp. 5223—5236. https://doi.org/10.1128/JB.00105-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sprent, J., Nodulation in legumes, Ann. Bot., 2002, vol. 89, no. 6, pp. 797—798. https://doi.org/10.1093/aob/mcf128

    Article  Google Scholar 

  13. Wdowiak-Wrobel, S., Marek-Kozaczuk, M., Kalita, M., et al., Diversity and plant growth promoting properties of rhizobia isolated from root nodules of Ononis arvensis, Antonie van Leeuwenhoek, 2017, vol. 110, pp. 1087—1103. https://doi.org/10.1007/s10482-017-0883-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baimiev, An.Kh., Ptitsyn, K.G., and Baimiev, Al.Kh., Influence of the introduction of Caragana arborescens on the composition of its root-nodule bacteria, Microbiology (Moscow), 2010, vol. 79, no. 1, pp. 115—120. https://doi.org/10.1134/S0026261710010157

    Article  CAS  Google Scholar 

  15. Williams, J.G., Kubelik, A.R., Livak, K.J., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res., 1990, vol. 18, no. 22, pp. 6531—6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laguerre, G.P., Mavingui, M.R., Allard, M.P., et al., Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2029—2036.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697—703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baimiev, An.Kh., Ivanova, E.S., Gumenko, R.S., et al., Analysis of symbiotic genes of leguminous root nodule bacteria grown in the Southern Urals, Russ. J. Genet., 2015, vol. 51, no. 12, pp. 1172—1180. https://doi.org/10.1134/S1022795415110034.

    Article  CAS  Google Scholar 

  19. Provorov, N.A., Vorob’ev, N.I., and Tikhonovich, I.A., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Evolutionary Genetics of Plant—Microbe Symbioses), St. Petersburg: Inform-Navigator, 2012.

  20. Fred, E.B., Baldwin, I.L., and McCoy, E., Root Nodule Bacteria and Leguminous Plants, Madisson: Univ. Wisconsin Stud. Sci., 1932.

  21. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbioses of Plants and Microorganisms: Molecular Genetics of Future Agricultural Systems), St. Petersburg: St. Petersburg Gos. Univ., 2009.

  22. Baimiev, An.Kh., Ivanova, E.S., Ptitsyn, K.G., Belimov, A.A., Safronova, V.I., and Baimiev, Al.Kh., Genetic characterization of wild legume nodule bacteria of the Southern Urals, Mol. Genet. Microbiol. Virol., 2012, vol. 27, no. 1, pp. 33—39. https://doi.org/10.3103/S0891416812010028

    Article  Google Scholar 

  23. Provorov, N.A. and Vorobyov, N.I., Evolution of symbiotic bacteria in “plant—soil” systems: interplay of molecular and population mechanisms, Progress in Environmental Microbiology, Kim, M.-B., Ed., New York: Nova Sci. Publ., 2008, pp. 11—67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An. Kh. Baymiev.

Additional information

Translated by A. Boutanaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baymiev, A.K., Akimova, E.S., Gumenko, R.S. et al. Genetic Diversity and Phylogeny of Root Nodule Bacteria Isolated from Nodules of Plants of the Lupinaster Genus Inhabiting the Southern Urals. Russ J Genet 55, 45–51 (2019). https://doi.org/10.1134/S1022795419010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419010022

Keywords:

Navigation