Skip to main content
Log in

The principle of genome complementarity in the enhancement of plant adaptive capacities

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the present work, the potential for the enhancement of the adaptive capacity of microbe–plant systems (MPSs) through the integration of the symbiosis partners’ genomes is considered on the example of different types of symbiotic relationships. The accumulated data on the genetic control of interactions for both the plant and microbe, which are discussed in the paper with respect to signaling genes, suggest that it is the complementarity of genetic determinants that underlies the successful formation of MPSs. A eukaryotic genome with limited information content, which is stable throughout a generation, is complemented by a virtually unlimited prokaryotic metagenome. The microsymbiont’s ability to adapt to different living conditions is based on the restructuring of the accessory genome by different mechanisms, which are likely to be activated under the influence of plants, although the details of such a regulation remain unknown. Features of the genetic control of the interaction, particularly its universal character for different symbionts, allow us to formulate a principle of genome complementarity with respect to interacting organisms and consider it an important factor, an adaptation that enhances the abilities of MPSs for their sustainable development in natural ecosystems and for high plant productivity in agrocenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAOSTAT, 2014. http://faostat.fao.org/

  2. Coghlan, A., Eichler, E.E., Oliver, S.G., et al., Chromosome evolution in eukaryotes: a multi-kingdom perspective, Trends Genet., 2005, vol. 21, pp. 673–682.

    Article  CAS  PubMed  Google Scholar 

  3. Hugenholtz, Ph., Exploring prokaryotic diversity in the genomic era, Genome Biol., 2002, vol. 2, no. 3, pp. 0003.1–0003.8.

    Google Scholar 

  4. Daniel, R., The metagenomics of soil, Nat. Rev. Microbiol., 2005, vol. 6, no. 3, pp. 470–478.

    Article  Google Scholar 

  5. Torsvik, V., Goksøyr, J., and Daae, F.L., High diversity in DNA of soil bacteria, Appl. Environ. Microbiol., 1990, vol. 3, no. 56, pp. 782–787.

    Google Scholar 

  6. Morgan, N., The complexity chronicles, Nature, 2014, vol. 510, no. 7505, pp. 338–339.

    Article  Google Scholar 

  7. Margulis, L., Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, San Francisco: Freeman, 1981.

    Google Scholar 

  8. Tikhonovich, I.A. and Provorov, N.A., From plantmicrobe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration, Ann. Appl. Biol., 2009, vol. 154, no. 3, pp. 341–350.

    Article  Google Scholar 

  9. Roger, E., Soil science comes to life, Nature, 2013, vol. 501, no. 7468, pp. 18–19.

    Article  Google Scholar 

  10. Belimov, A.A., Dodd, I.C., Hontzeas, N., et al., Rhizosphere bacteria containing 1-aminocyclopropane-1carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling, New Phytol., 2009, vol. 181, no. 2, pp. 413–423.

    Article  CAS  PubMed  Google Scholar 

  11. Berendsen, R.L., Pieterse, C.M., and Bakker, P.A., The rhizosphere microbiome and plant health, Trends Plant Sci., 2012, vol. 17, no. 8, pp. 478–486.

    Article  CAS  PubMed  Google Scholar 

  12. Lundberg, D.S., Lebeis, S.L., Paredes, S.H., et al., Defining the core Arabidopsis thaliana root microbiome, Nature, 2012, vol. 488, no. 7409, pp. 86–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., et al., A core gut microbiome in obese and lean twins, Nature, 2009, vol. 457, no. 7228, pp. 480–484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Borisov, A.Y., Danilova, T.N., Koroleva, T.A., et al., Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application, Biologia, 2004, vol. 59, suppl. 13, pp. 137–144.

    CAS  Google Scholar 

  15. Borisov, A.Yu., Vasil’chikov, A.G., Voroshilova, V.A., et al., Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects, Appl. Biochem. Microbiol., 2007, vol. 43, no. 3, pp. 237–243.

    Article  CAS  Google Scholar 

  16. Borisov, A.Yu., Shtark, O.Yu., Zhukov, V.A., et al., Interaction of legumes with beneficial soil microorganisms: from plant genes to varieties, S-kh. Biol., 2011, no. 3, pp. 41–47.

    Google Scholar 

  17. Tikhonovich, I.A. and Provorov, N.A., Symbiogenetics of plant–microbe interactions, Ekol. Genet., 2003, no. 1, pp. 36–46.

    Google Scholar 

  18. Tikhonovich, I.A. and Provorov, N.A., Agricultural microbiology as the basis of ecologically sustainable agriculture: fundamental and applied aspects, S-kh. Biol., 2011, no. 3, pp. 3–9.

    Google Scholar 

  19. Zhukov, V.A., Shtark, O.Yu., Borisov, A.Yu., and Tikhonovich, I.A., Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1279–1288.

    Article  CAS  Google Scholar 

  20. Zhukov, V.A., Zhernakov, A.I., Ershov, N.I., et al., Regulation of morphogenesis of symbiotic nodules of pea (Pisum sativum L.), identified through transcriptome sequencing, in Tezisy dokladov VIs”ezda Vavilovskogo obshchestva genetikov i selektsionerov (VOGiS) i assotsiirovannykh geneticheskikh simpoziumov (Abstracts of the 6th Congress of the Vavilov Society of Geneticists and Breeders and Associated Genetic Symposiums), Rostov-on-Don, 2014, p. 72.

    Google Scholar 

  21. Dénarié, J., Debellé, F., Promé, J.C., Rhizobium lipochitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis, Annu. Rev. Biochem., 1996, vol. 65, pp. 503–535.

    Article  PubMed  Google Scholar 

  22. Leppyanen, I.V., Biological synthesis of chitin oligomers and their terminally deacetylated derivatives by enzymes of nodule bacteria, Cand. Sci. (Biol.) Dissertation, St. Petersburg: St. Petersburg. State Univ., 2013.

    Google Scholar 

  23. Madsen, E.B., Madsen, L.H., Radutoiu, S., et al., A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals, Nature, 2003, vol. 425, no. 6958, pp. 637–640.

    Article  CAS  PubMed  Google Scholar 

  24. Radutoiu, S., Madsen, L.H., Madsen, E.B., et al., Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases, Nature, 2003, vol. 425, no. 6958, pp. 585–592.

    Article  CAS  PubMed  Google Scholar 

  25. Zhukov, V., Radutoiu, S., Madsen, L.H., et al., The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development, Mol. Plant Microbe Interact., 2008, vol. 21, no. 12, pp. 1600–1608.

    Article  CAS  PubMed  Google Scholar 

  26. Kirienko, A.N., Porozov, Yu.B., and Dolgikh, E.A., The role of the new LysM-receptor-like kinase K1 of pea in the development of symbiosis with nodule bacteria, in Biologiya—nauka XXI veka (Biology—The Science of 21th Century) (Collection of Abstracts of 17th Int. Pushchinskaya School–Conf. Young Sci.), Pushchino, 2013, p. 199.

    Google Scholar 

  27. Razumovskaya, Z.G., Nodulation in different pea cultivars, Mikrobiologiya, 1937, vol. 6, no. 3, pp. 321–328.

    Google Scholar 

  28. Lie, T.A., Symbiotic specialization in pea plants: the requirement of specific Rhizobium strains for peas from Afghanistan, Ann. Appl. Biol., 1978, vol. 88, pp. 462–465.

    Article  Google Scholar 

  29. Firmin, J.L., Wilson, K.E., Carlson, R.W., et al., Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor, Mol. Microbiol., 1993, vol. 10, no. 2, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  30. Zhukov, V.A., Rychagova, T.S., Shtark, O.Yu., et al., The genetic control of specificity of interactions between legume plants and nodule bacteria, Ekol. Genet., 2008, vol. 6, no. 4, pp. 12–19.

    CAS  Google Scholar 

  31. Zhukov, V.A., Sulima, A.S., Porozov, Y.B., et al., Polymorphism in gene sequence of LysM receptor kinase is associated with Sym2-controlled nodulation in pea (Pisum sativum L.), in Proceedings of 18th International Conference on Nitrogen Fixation, Myazaki, 2013, p. 76.

    Google Scholar 

  32. Limpens, E., Franken, C., Smit, P., et al., LysM domain receptor kinases regulating rhizobial Nod factor-induced infection, Science, 2003, vol. 302, no. 5645, pp. 630–633.

    Article  CAS  PubMed  Google Scholar 

  33. Li, R., Knox, M.R., Edwards, A., et al., Natural variation in host-specific nodulation of pea is associated with a haplotype of the SYM37 LysM-type receptorlike kinase, Mol. Plant Microbe Interact., 2011, vol. 24, no. 11, pp. 1396–1403.

    Article  CAS  PubMed  Google Scholar 

  34. Maillet, F., Poinsot, V., André, O., et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, 2011, vol. 469, no. 7328, pp. 58–63.

    Article  CAS  PubMed  Google Scholar 

  35. Parniske, M., Arbuscular mycorrhiza: the mother of plant root endosymbioses, Nat. Rev. Microbiol., 2008, vol. 6, pp. 763–775.

    Article  CAS  PubMed  Google Scholar 

  36. Endre, G., Kereszt, A., Kevei, Z., et al., A receptor kinase gene regulating symbiotic nodule development, Nature, 2002, vol. 417, no. 6892, pp. 962–966.

    Article  CAS  PubMed  Google Scholar 

  37. Stracke, S., Kistner, C., Yoshida, S., et al., A plant receptor-like kinase required for both bacterial and fungal symbiosis, Nature, 2002, vol. 417, no. 6892, pp. 959–962.

    Article  CAS  PubMed  Google Scholar 

  38. Oldroyd, G.E. and Downie, J.A., Calcium, kinases and nodulation signalling in legumes, Nat. Rev. Mol. Cell. Biol., 2004, vol. 5, no. 7, pp. 566–576.

    Article  CAS  PubMed  Google Scholar 

  39. Kouchi, H., Imaizumi-Anraku, H., Hayashi, M., et al., How many peas in a pod? Legume genes responsible for mutualistic symbioses underground, Plant Cell Physiol., 2010, vol. 51, no. 9, pp. 1381–1397.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Yano, K. and Yoshida, S., Müller, J., et al., CYCLOPS, a mediator of symbiotic intracellular accommodation, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 51, pp. 20540–20545.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Messinese, E., Mun, J.H., Yeun, L.H., et al., A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula, Mol. Plant Microbe Interact., 2007, vol. 20, no. 8, pp. 912–921.

    Article  CAS  PubMed  Google Scholar 

  42. Ovchinnikova, E., Journet, E.P., Chabaud, M., et al., IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp., Mol. Plant Microbe Interact., 2011, vol. 24, no. 11, pp. 1333–1344.

    Article  CAS  PubMed  Google Scholar 

  43. Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., et al., Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development, Nature, 2006, vol. 441, no. 7097, pp. 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez, L., Weidmann, S., Arnould, C., et al., Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula, Plant Physiol., 2005, vol. 139, no. 2, pp. 1065–1077.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Krasil’nikov, N.A. and Melkumova, T.A., Variation of nodule bacteria in the nodules of leguminous plants, Izv. Akad. Nauk SSSR, 1963, no. 5, pp. 693–706.

    Google Scholar 

  46. Osterman, J., Chizhevskaja, E.P., Andronov, E.E., et al., Galega orientalis is more diverse than Galega officinalis in Caucasus—whole-genome AFLP analysis and phylogenetics of symbiosis-related genes, Mol. Ecol., 2011, vol. 20, no. 22, pp. 4808–4821.

    Article  CAS  PubMed  Google Scholar 

  47. Andronov, E.E., Onishchuk, O.P., Kurchak, O.N., and Provorov, N.A., Population structure of the clover rhizobia Rhizobium leguminosarum bv. trifolii upon transition from soil into the nodular niche, Microbiology, 2014, vol. 83, no. 4, p. 422–429.

    Article  CAS  Google Scholar 

  48. Porozov, Yu.B., Muntyan, A.N., Chizhevskaya, E.P., et al., Linked symbiotic populations: analysis of polymorphism in nfr5 receptor gene by using molecular doking, Ekol. Genet., 2012, vol. 10, no. 1, pp. 12–18.

    Google Scholar 

  49. Østerås, M., Boncompagni, E. Vincent, N., et al., Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet-operon: choline-O-sulfate is metabolized into glycine betaine, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 19, pp. 11394–11399.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Boscari, A., Mandon, K., Dupont, L., et al., BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti, J. Bacteriol., 2002, vol. 184, no. 10, pp. 2654–2663.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Yurgel, S.N., Rice, J., Mulder, M., et al., Truncated betB2-144 plays a critical role in Sinorhizobium meliloti Rm2011 osmoprotection and glycine–betaine catabolism, Eur. J. Soil Biol., 2013, vol. 54, pp. 48–55.

    Article  CAS  Google Scholar 

  52. Rumyantseva, M.L., Belova, V.S., Onishchuk, O.P., et al., Polymorphism of bet genes among Sinorhizobium meliloti isolates native to gene centers of alfalfa, S-kh. Biol., 2011, no. 3, pp. 48–54.

    Google Scholar 

  53. Pitsik, E.V., The study of betS locus of nodule bacteria Sinorhizobium meliloti and its value under salinity conditions, Magister Sci. (Biol.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2008, p. 70.

    Google Scholar 

  54. Finan, T.M., Evolving insights: symbiosis islands and horizontal gene transfer, J. Bacteriol., 2002, vol. 184, no. 11, pp. 2855–2856.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Guo, F.-B., Wei, W., Wang, X.L., et al., Co-evolution of genomic islands and their bacterial hosts revealed through phylogenetic analyses of 17 groups of homologous genomic islands, Genet. Mol. Res., 2012, vol. 11, no. 4, pp. 3735–3743.

    Article  CAS  PubMed  Google Scholar 

  56. Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J., Genomic islands in pathogenic and environmental microorganisms, Nat. Rev. Microbiol., 2004, vol. 2, no. 5, pp. 414–424.

    Article  CAS  PubMed  Google Scholar 

  57. Ulvé, V.M., Sevin, E.W., Chéron, A., and Barloy-Hubler, F., Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021, BMC Genomics, 2007, vol. 8, p. 467.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Capela, D., Barloy-Hubler, F., Gouzy, J., et al., Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti, Proc. Natl. Acad. Sci. U.S.A., vol. 98, no. 17, pp. 9877–9882.

  59. Becker, A., Barnett, M.J., Capela, D., et al., A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data, J. Biotechnol., 2009, vol. 140, nos. 1–2, pp. 45–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ferri, L., Gori, A., Biondi, E.G., et al., Plasmid electroporation of Sinorhizobium strains: the role of the restriction gene hsdR in type strain Rm1021, Plasmid, 2010, vol. 63, pp. 128–135.

    Article  CAS  PubMed  Google Scholar 

  61. Becker, A., Bergés, H., Krol, E., et al., Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions, Mol. Plant Microbe Interact., 2004, vol. 17, no. 3, pp. 292–303.

    Article  CAS  PubMed  Google Scholar 

  62. Krol, E. and Becker, A., Global transcriptional analysis of phosphate stress responses in Sinorhizobium meliloti strains 1021 and 2011, Mol. Gen. Genomics, 2004, vol. 272, no. 1, pp. 1–17.

    Article  CAS  Google Scholar 

  63. Domínguez-Ferreras, A., Perez-Arnedo, R., Becker, A., et al., Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti, J. Bacteriol., 2006, vol. 188, no. 21, pp. 7617–7625.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Rüberg S., Tian, Z.-X. Krol, E., et al., Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression, J. Biotechnol., 2003, vol. 106, nos. 2–3, pp. 255–268.

    Article  PubMed  Google Scholar 

  65. de Weert, S., Dekkers, L.C., Kuiper, I., et al., Generation of enhanced competitive root-tip-colonizing Pseudomonas bacteria through accelerated evolution, J. Bacteriol., 2004, vol. 186, no. 10, pp. 3153–3159.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Madsen, L.H., Tirichine, L., Jurkiewicz, A., et al., The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus, Nat. Commun., 2010, vol. 1, p. 10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Tikhonovich.

Additional information

Original Russian Text © I.A. Tikhonovich, E.E. Andronov, A.Yu. Borisov, E.A. Dolgikh, A.I. Zhernakov, V.A. Zhukov, N.A. Provorov, M.L. Roumiantseva, B.V. Simarov, 2015, published in Genetika, 2015, Vol. 51, No. 9, pp. 973–990.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonovich, I.A., Andronov, E.E., Borisov, A.Y. et al. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russ J Genet 51, 831–846 (2015). https://doi.org/10.1134/S1022795415090124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415090124

Keywords

Navigation