Skip to main content

Advertisement

Log in

Virus-induced silencing as a method for studying gene functions in higher plants

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The method of virus-induced gene silencing (VIGS) based on posttranscriptional gene silencing (PTGS) is a promising new method for the study of plant gene functions. In the current review, we analyzed works on the development and improvement of this method, including the creation of new viral constructions for different plant species, the search for new reporter genes for the control of VIGS efficiency, and the development of new, efficient methods of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tiwari, M., Sharma, D., and Trivedi, P.K., Artificial microRNA mediated gene silencing in plants: progress and perspectives, Plant. Mol. Biol., 2014, vol. 86, pp. 1–18.

    CAS  PubMed  Google Scholar 

  2. Sangaev, S.S., Trifonova, E.A., Titov, S.E., et al., Silencing of the Nk1 gene in the SR1 Nicotiana tabacum plants by RNA interference, Russ. J. Genet., 2010, vol. 46, no. 1, pp. 117–119.

    CAS  Google Scholar 

  3. Kochetov, A.V., Titov, S.E., Kolodiazhnaia, Ia.S., et al., Increase in the level of proline and osmotic pressure of cytoplasm in transformed tobacco bearing an antisense suppressor of the proline dehydrogenase gene, Russ. J. Genet., 2004, vol. 40, pp. 282–285.

    CAS  Google Scholar 

  4. Robinson, S.J. and Parkin, I.A., Bridging the gene-to-function knowledge gap through functional genomics, Methods Mol. Biol., 2009, vol. 513, pp. 153–173.

    CAS  PubMed  Google Scholar 

  5. Trifonova, E.A., Sapotsky, M.V., Komarova, M.L., et al., Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against tobacco mosaic virus, Plant Cell Rep., 2007, vol. 26, pp. 1121–1126.

    CAS  PubMed  Google Scholar 

  6. Sangaev, S.S., Trifonova, E.A., Titov, S.E., et al., Effective expression of the gene encoding an extracellular ribonuclease of Zinnia elegans in the SR1 Nicotiana tabacum plants, Russ. J. Genet., 2007, vol. 43, no. 7, pp. 831–833.

    CAS  Google Scholar 

  7. Matthew, L., RNAi for plant functional genomics, Comp. Funct. Genomics, 2004, vol. 5, pp. 240–244.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Carrillo-Tripp, J., Shimada-Beltran, H., and Rivera-Bustamante, R., Use of geminiviral vectors for functional genomics, Curr. Opin. Plant. Biol., 2006, vol. 9, pp. 209–215.

    CAS  PubMed  Google Scholar 

  9. Fu, D.Q., Zhu, B.Z., Zhu, H.L., et al., Virus-induced gene silencing in tomato fruit, Plant J., 2005, vol. 43, pp. 299–308.

    CAS  PubMed  Google Scholar 

  10. The Arabidopsis Genome Initiative: analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 2000, vol. 408, pp. 796–815.

  11. Wang, X., Shi, X., Hao, B., et al., Duplication and DNA segmental loss in the rice genome: implications for diploidization, New Phytol., 2005, vol. 165, pp. 937–946.

    CAS  PubMed  Google Scholar 

  12. Ryu, C.M., Anand, A., Kang, L., and Mysore, K.S., Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse solanaceous species, Plant J., 2004, vol. 40, pp. 322–331.

    CAS  PubMed  Google Scholar 

  13. Todd, A.T., Liu, E., Polvi, S.L., et al., A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana, Plant J., 2010, vol. 62, pp. 589–600.

    CAS  PubMed  Google Scholar 

  14. George, G.M., Bauer, R., Blennow, A., et al., Virusinduced multiple gene silencing to study redundant metabolic pathways in plants: silencing the starch degradation pathway in Nicotiana benthamiana, Biotechnol. J., 2012, vol. 7, pp. 884–890.

    CAS  PubMed  Google Scholar 

  15. Brigneti, G., Martin-Hernandez, A.M., Jin, H., et al., Virus-induced gene silencing in Solanum species, Plant J., 2004, vol. 39, pp. 264–272.

    CAS  PubMed  Google Scholar 

  16. Liu, Y., Schiff, M., and Dinesh-Kumar, S.P., Virus-induced gene silencing in tomato, Plant J., 2002, vol. 31, pp. 777–786.

    CAS  PubMed  Google Scholar 

  17. Turnage, M.A., Muangsan, N., Peele, C.G., and Robertson, D., Geminivirus-based vectors for gene silencing in Arabidopsis, Plant J., 2002, vol. 30, pp. 107–114.

    CAS  PubMed  Google Scholar 

  18. Burch-Smith, T.M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P., Efficient virus-induced gene silencing in Arabidopsis, Plant Physiol., 2006, vol. 142, pp. 21–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Cakir, C., Gillespie, M.E., and Scofield, S.R., Rapid determination of gene function by virus-induced gene silencing in wheat and barley, Crop Sci., 2010, vol. 50, pp. 77–84.

    Google Scholar 

  20. Hein, I., Barciszewska-Pacak, M., Hrubikova, K., et al., Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley, Plant Physiol., 2005, vol. 138, pp. 2155–2164.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Ding, X.S., Rao, C.S., and Nelson, R.S., Analysis of gene function in rice through virus-induced gene silencing, Methods Mol. Biol., 2007, vol. 354, pp. 145–160.

    CAS  PubMed  Google Scholar 

  22. Nagamatsu, A., Masuta, C., Senda, M., et al., Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing, Plant Biotechnol. J., 2007, vol. 5, pp. 778–790.

    CAS  PubMed  Google Scholar 

  23. Hileman, L.C., Drea, S., de Martino, G., et al., Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy), Plant J., 2005, vol. 44, pp. 334–341.

    CAS  PubMed  Google Scholar 

  24. Baulcombe, D.C., Fast forward genetics based on virus-induced gene silencing, Curr. Opin. Plant. Biol., 1999, vol. 2, pp. 109–113.

    CAS  PubMed  Google Scholar 

  25. Becker, A. and Lange, M., VIGS—genomics goes functional, Trends Plant Sci., 2010, vol. 15, pp. 1–4.

    CAS  PubMed  Google Scholar 

  26. Senthil-Kumar, M. and Mysore, K.S., New dimensions for VIGS in plant functional genomics, Trends Plant Sci., 2011, vol. 16, pp. 656–665.

    CAS  PubMed  Google Scholar 

  27. Mlotshwa, S., Pruss, G.J., and Vance, V., Small RNAs in viral infection and host defense, Trends Plant Sci., 2008, vol. 13, pp. 375–382.

    CAS  PubMed  Google Scholar 

  28. Bozorov, T.A., Pandey, S.P., Dinh, S.T., et al., DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata, J. Integr. Plant Biol., 2012, vol. 54, pp. 189–206.

    CAS  PubMed  Google Scholar 

  29. Goldbach, R., Bucher, E., and Prins, M., Resistance mechanisms to plants viruses: an overview, Virus Res., 2003, vol. 92, pp. 207–212.

    CAS  PubMed  Google Scholar 

  30. Schwarz, D.S., Hutvagner, G., Du, T., et al., Asymmetry in the assembly of the RNAi enzyme complex, Cell, 2003, vol. 115, pp. 199–208.

    CAS  PubMed  Google Scholar 

  31. Vaucheret, H., Plant ARGONAUTES, Trends Plant Sci., 2008, vol. 13, pp. 350–357.

    CAS  PubMed  Google Scholar 

  32. Wang, X.B., Jovel, J., Udomporn, P., et al., The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana, Plant Cell, 2011, vol. 23, pp. 1625–1638.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Lipardi, C., Wei, Q., and Paterson, B.M., RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs, Cell, 2001, vol. 107, pp. 297–307.

    CAS  PubMed  Google Scholar 

  34. Yoo, B.C., Kragler, F., Varkonyi-Gasic, E., et al., A systemic small RNA signaling system in plants, Plant Cell, 2004, vol. 16, pp. 1979–2000.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Lange, M., Yellina, A.L., Orashakova, S., and Becker, A., Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems, Methods Mol. Biol., 2013, vol. 975, pp. 1–14.

    CAS  PubMed  Google Scholar 

  36. Robertson, D., VIGS vectors for gene silencing: many targets, many tools, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 495–519.

    CAS  PubMed  Google Scholar 

  37. Metzlaff, M., RNA-mediated RNA degradation in transgene- and virus-induced gene silencing, Biol. Chem., 2002, vol. 383, pp. 1483–1489.

    CAS  PubMed  Google Scholar 

  38. Burger, C., Rondet, S., Benveniste, P., and Schaller, H., Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14α-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana, J. Exp. Bot., 2003, vol. 54, pp. 1675–1683.

    CAS  PubMed  Google Scholar 

  39. Angell, S. and Baulcombe, D., Technical advance: Potato virus X amplicon-mediated silencing of nuclear genes, Plant J., 1999, vol. 20, pp. 357–362.

    CAS  PubMed  Google Scholar 

  40. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C., Initiation and maintenance of virus-induced gene silencing, Plant Cell, 1998, vol. 10, pp. 937–946.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Faivre-Rampant, O., Gilroy, E., Hrubikova, K., et al., Potato virus X-induced gene silencing in leaves and tubers of potato, Plant Physiol., 2004, vol. 134, pp. 1308–1316.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Li, R., Reed, D.W., Liu, E., et al., Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement, Chem. Biol., 2006, vol. 13, pp. 513–520.

    CAS  PubMed  Google Scholar 

  43. Kramer, E.M., Holappa, L., Gould, B., et al., Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia (Ranunculaceae), Plant Cell, 2007, vol. 19, pp. 756–766.

    Google Scholar 

  44. Wege, S., Scholz, A., Gleissberg, S., and Becker, A., Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants, Ann. Bot., 2007, vol. 100, pp. 641–649.

    PubMed Central  PubMed  Google Scholar 

  45. Liu, Y.L., Schiff, M., Marathe, R., and Dinesh-Kumar, S.P., Tobacco RAR1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to Tobacco mosaic virus, Plant J., 2002, vol. 30, pp. 415–429.

    CAS  PubMed  Google Scholar 

  46. Ryu, C.M., Anand, A., Kang, L., and Mysore, K.S., Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse solanaceous species, Plant J., 2004, vol. 40, pp. 322–331.

    CAS  PubMed  Google Scholar 

  47. Kim, Y.C., Kim, S.Y., Paek, K.H., et al., Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants, Biochem. Biophys. Res. Commun., 2006, vol. 345, pp. 638–645.

    CAS  PubMed  Google Scholar 

  48. Chung, E., Seong, E., Kim, Y., et al., A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang), Mol. Cells, 2004, vol. 17, pp. 377–380.

    CAS  PubMed  Google Scholar 

  49. Chen, J.C., Jiang, C.Z., Gookin, T., et al., Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence, Plant. Mol. Biol., 2004, vol. 55, pp. 521–530.

    CAS  PubMed  Google Scholar 

  50. Broderick, S.R. and Jones, M.L., An optimized protocol to increase virus-induced gene silencing efficiency and minimize viral symptoms in Petunia, Plant Mol. Biol. Report., 2014, vol. 32, pp. 219–233.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Chai, Y.M., Jia, H.F., Li, C.L., et al., FaPYR1 is involved in strawberry fruit ripening, J. Exp. Bot., 2011, vol. 62, pp. 5079–5089.

    CAS  PubMed  Google Scholar 

  52. Wang, C.C., Cai, X.Z., Wang, X.M., and Zheng, Z., Optimization of tobacco rattle virus-induced gene silencing in Arabidopsis, Funct. Plant Biol., 2006, vol. 33, pp. 347–355.

    CAS  Google Scholar 

  53. Holzberg, S., Brosio, P., Gross, C., and Pogue, G., Barley stripe mosaic virus-induced gene silencing in a monocot plant, Plant J., 2002, vol. 30, pp. 315–327.

    CAS  PubMed  Google Scholar 

  54. Scofield, S.R., Huang, L., Brandt, A.S., and Gill, B.S., Development of a virus-induced gene silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway, Plant Physiol., 2005, vol. 138, pp. 2165–2173.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Bruun-Rasmussen, M., Madsen, C.T., Jessing, S., and Albrechtsen, M., Stability of Barley stripe mosaic virus-induced gene silencing in barley, Mol. Plant-Microbe Interact., 2007, vol. 20, pp. 1323–1331.

    CAS  PubMed  Google Scholar 

  56. Pacak, A., Geisler, K., Jørgensen, B., et al., Investigations of Barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat, Plant Methods, 2010, vol. 6, pp. 1–16.

    Google Scholar 

  57. Renner, T., Bragg, J., Driscoll, H.E., et al., Virus-induced gene silencing in the culinary ginger (Zingiber officinale): an effective mechanism for down-regulating gene expression in tropical monocots, Mol. Plant, 2009, vol. 2, pp. 1084–1094.

    CAS  PubMed  Google Scholar 

  58. Zhang, C. and Ghabrial, S.A., Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean, Virology, 2006, vol. 344, pp. 401–411.

    CAS  PubMed  Google Scholar 

  59. Constantin, G.D., Krath, B.N., MacFarlane, S.A., et al., Virus-induced gene silencing as a tool for functional genomics in a legume species, Plant J., 2004, vol. 40, pp. 622–631.

    CAS  PubMed  Google Scholar 

  60. Grønlund, M., Constantin, G., Piednoir, E., et al., Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata, Virus Res., 2008, vol. 135, pp. 345–349.

    PubMed  Google Scholar 

  61. Naylor, M., Reeves, J., Cooper, J.I., et al., Construction and properties of a gene-silencing vector based on Poplar mosaic virus (genus Carlavirus), J. Virol. Methods, 2005, vol. 124, pp. 27–36.

    CAS  PubMed  Google Scholar 

  62. Ding, X.S., Schneider, W.L., Chaluvadi, S.R., et al., Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts, Mol. Plant-Microbe Interact., 2006, vol. 19, pp. 1229–1239.

    CAS  PubMed  Google Scholar 

  63. van der Linde, K., Kastner, C., Kumlehn, J., et al., Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis, New Phytol., 2011, vol. 189, pp. 471–483.

    PubMed  Google Scholar 

  64. Peele, C., Jordan, C.V., Muangsan, N., et al., Silencing of a meristematic gene using Geminivirus-derived vectors, Plant J., 2001, vol. 27, pp. 357–366.

    CAS  PubMed  Google Scholar 

  65. Pignatta, D., Pavan, K., Massimo, T., et al., Quantitative analysis of efficient endogenous gene silencing in Nicotiana benthamiana plants using Tomato bushy stunt virus vectors that retain the capsid protein gene, Mol. Plant-Microbe Interact., 2007, vol. 20, pp. 609–618.

    CAS  PubMed  Google Scholar 

  66. Fofana, I., Sangare, A., Collier, R., et al., A Geminivirus-induced gene silencing system for gene function validation in cassava, Plant. Mol. Biol., 2004, vol. 56, pp. 613–624.

    CAS  PubMed  Google Scholar 

  67. Cai, X.Z., Wang, C.C., Xu, Y., et al., Efficient gene silencing induction in tomato by a viral satellite DNA vector, Virus Res., 2007, vol. 125, pp. 169–175.

    CAS  PubMed  Google Scholar 

  68. Tao, X.R. and Zhou, X.P., A modified viral satellite DNA that suppresses gene expression in plants, Plant J., 2004, vol. 38, pp. 850–860.

    CAS  PubMed  Google Scholar 

  69. Qian, Y.J., Mugiira, R.B., and Zhou, X.P., A modified viral satellite DNA-based gene silencing vector is effective in association with heterologous begomoviruses, Virus Res., 2006, vol. 118, pp. 136–142.

    CAS  PubMed  Google Scholar 

  70. Tao, X.R., Zhou, X.P., Cui, X.F., and Qian, Y.J., Virus-induced gene silencing and its application for analysis of genomic function in plants, Prog. Biochem. Biophys., 2004, vol. 31, pp. 777–783.

    CAS  Google Scholar 

  71. Yaegashi, H., Yamatsuta, T., Takahashi, T., et al., Characterization of virus-induced gene silencing in tobacco plants infected with Apple latent spherical virus, Arch. Virol., 2007, vol. 152, pp. 1839–1849.

    CAS  PubMed  Google Scholar 

  72. Igarashi, A., Yamagata, K., Sugai, T., et al., Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits and legumes, Virology, 2009, vol. 386, pp. 407–416.

    CAS  PubMed  Google Scholar 

  73. Sasaki, S., Yamagishi, N., and Yoshikawa, N., Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors, Plant Methods, 2011, vol. 7, pp. 1–11.

    Google Scholar 

  74. Otagaki, S., Arai, M., Takahashi, A., et al., Rapid induction of transcriptional and posttranscriptional gene silencing using a novel Cucumber mosaic virus vector, Plant Biotechnol., 2006, vol. 23, pp. 259–265.

    CAS  Google Scholar 

  75. Kim, B.M., Inaba, J., and Masuta, C., Virus-induced gene silencing in Antirrhinum majus using the Cucumber mosaic virus vector: functional analysis of the AIN-TEGUMENTA (Am-ANT) gene of A. majus, Hort. Environ. Biotechnol., 2011, vol. 52, pp. 176–182.

    Google Scholar 

  76. Lu, H.C., Chen, H.H., Tsai, W.C., et al., Strategies for functional validation of genes involved in reproductive stages of orchids, Plant Physiol., 2007, vol. 143, pp. 558–569.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Giliberto, L., Perrotta, G., Pallara, P., et al., Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content, Plant Physiol., 2005, vol. 137, pp. 199–208.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Gammelgard, E., Mohan, M., and Valkonen, J.P., Potyvirus-induced gene silencing: the dynamic process of systemic silencing and silencing suppression, J. Gen. Virol., 2007, vol. 88, pp. 2337–2346.

    PubMed  Google Scholar 

  79. Voinnet, O., RNA silencing as a plant immune system against viruses, Trends Genet., 2001, vol. 17, pp. 449–459.

    CAS  PubMed  Google Scholar 

  80. Sonoda, S. and Nishiguchi, M., Graft transmission of posttranscriptional gene silencing: target specificity for RNA degradation is transmissible between silenced and non-silenced plants, but not between silenced plants, Plant J., 2000, vol. 21, pp. 1–8.

    CAS  PubMed  Google Scholar 

  81. Sonoda, S. and Nishiguchi, M., Delayed activation of posttranscriptional gene silencing and de novo transgene methylation in plants with the coat protein gene of Sweet potato feathery mottle potyvirus, Plant Sci., 2000, vol. 156, pp. 137–144.

    CAS  Google Scholar 

  82. Kumagai, M.H., Donson, J., Cioppa, G., et al., Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 1679–1683.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Abraham-Juarez, M., Rocha-Granados, M., Lopez, M., et al., Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits, Planta, 2008, vol. 227, pp. 681–695.

    Google Scholar 

  84. Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D., Tobacco rattle virus as a vector for analysis of gene function by silencing, Plant J., 2001, vol. 25, pp. 237–245.

    CAS  PubMed  Google Scholar 

  85. Bachan, S. and Dinesh-Kumar, S.P., Tobacco rattle virus (TRV)-based virus-induced gene silencing, Methods Mol. Biol., 2012, vol. 894, pp. 83–92.

    CAS  PubMed  Google Scholar 

  86. Benedito, V.A., Visser, P.B., Angenent, G.C., and Krens, F.A., The potential of virus-induced gene silencing for speeding up functional characterization of plant genes, Genet. Mol. Res., 2004, vol. 3, pp. 323–341.

    CAS  PubMed  Google Scholar 

  87. Yuan, C., Li, C., Yan, L., et al., A high throughput Barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots, PLoS One, 2011, vol. 6. e26468

  88. Gossele, V., Fache, I., Meulewaeter, F., et al., SVISS—a novel transient gene silencing system for gene function discovery and validation in tobacco plants, Plant J., 2002, vol. 32, pp. 859–866.

    CAS  PubMed  Google Scholar 

  89. Scholthof, H.B., Plant virus transport: motions of functional equivalence, Trends Plant Sci., 2005, vol. 10, pp. 376–382.

    CAS  PubMed  Google Scholar 

  90. Li, F. and Ding, S.W., Virus counterdefense: diverse strategies for evading the RNA-silencing immunity, Annu. Rev. Microbiol., 2006, vol. 60, pp. 503–531.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Scholthof, H.B., Heterologous expression of viral RNAi suppressors: RISC management, Plant Physiol., 2007, vol. 145, pp. 1110–1117.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Burch-Smith, T.M., Anderson, J.C., Martin, G.B., and Dinesh-Kumar, S.P., Applications and advantages of virus-induced gene silencing for gene function studies in plants, Plant J., 2004, vol. 39, pp. 734–746.

    CAS  PubMed  Google Scholar 

  93. Thomas, C.L., Jones, L., Baulcombe, D.C., and Maule, A.J., Size constraints for targeting post-transcriptional gene silencing and for using RNA-directed methylation in Nicotiana bethamiana using a Potato virus X vector, Plant J., 2001, vol. 25, pp. 417–425.

    CAS  PubMed  Google Scholar 

  94. Lu, R., Malcuit, I., Moffett, P., et al., High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance, EMBO J., 2003, vol. 22, pp. 5690–5699.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Orzaez, D., Mirabel, S., Wieland, W.H., and Granell, A., Agroinjection of tomato fruits: a tool for rapid functional analysis of transgenes directly in fruit, Plant Physiol., 2006, vol. 140, pp. 3–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Hiriart, J.B., Aro, E.M., and Lehto, K., Dynamics of the VIGS-mediated chimeric silencing of the Nicotiana benthamiana ChlH gene and of the Tobacco mosaic virus vector, Mol. Plant-Microbe Interact., 2003, vol. 16, pp. 99–106.

    CAS  PubMed  Google Scholar 

  97. Hudson, A., Carpenter, R., Doyle, R., and Coen, E.S., Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus, EMBO J., 1993, vol. 12, pp. 3711–3719.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Kruse, E., Mock, H.P., and Grimm, B., Isolation and characterization of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX, Plant. Mol. Biol., 1997, vol. 35, pp. 1053–1056.

    CAS  PubMed  Google Scholar 

  99. Chen, J.C., Jiang, C.Z., and Reid, M., Silencing a prohibitin alters plant development and senescence, Plant J., 2005, vol. 44, pp. 16–24.

    CAS  PubMed  Google Scholar 

  100. Kandoth, P.K., Heinz, R., Yeckel, G., et al., A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max, BMC Res. Notes, 2013, vol. 6, pp. 255–262.

    PubMed Central  PubMed  Google Scholar 

  101. Xu, L., Zhang, W., He, X., et al., Functional characterization of cotton genes responsive to Verticillium dahlia through bioinformatics and reverse genetics strategies, J. Exp. Bot., 2014, vol. 65, pp. 6679–6692.

    PubMed Central  PubMed  Google Scholar 

  102. Li, X., Zhang, Y., Huang, L., et al., Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea, BMC Plant Biol., 2014, vol. 14, pp. 166–183.

    PubMed Central  PubMed  Google Scholar 

  103. Jia, H. and Shen, Y., Virus-induced gene silencing in strawberry fruit, Methods Mol. Biol., 2013, vol. 975, pp. 211–218.

    CAS  PubMed  Google Scholar 

  104. Fernandez-Moreno, J.P., Orzaez, D., and Granell, A., VIGS: a tool to study fruit development in Solanum lycopersicum, Methods Mol. Biol., 2013, vol. 975, pp. 183–196.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zhirnov.

Additional information

Original Russian Text © I.V. Zhirnov, E.A. Trifonova, A.V. Kochetov, V.K. Shumny, 2015, published in Genetika, 2015, Vol. 51, No. 5, pp. 558–567.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirnov, I.V., Trifonova, E.A., Kochetov, A.V. et al. Virus-induced silencing as a method for studying gene functions in higher plants. Russ J Genet 51, 467–475 (2015). https://doi.org/10.1134/S1022795415050099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415050099

Keywords

Navigation