Skip to main content
Log in

Molecular genetic markers of economically important traits in dairy cattle

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The selection efficiency of complex quantitative economically important traits in dairy cattle depends on the identification of candidate genes responsible for these traits, as well as the determination of causative DNA polymorphism in these genes. Here, we review examples of DNA polymorphisms in coding and noncoding parts of genes that are associated with milk yield, milk fat and protein yields, milk fat and protein percentages, the biochemical composition of milk, and other milk production traits. Together with data of foreign authors, which were obtained predominantly for Holstein cattle, much attention in the review is paid to studies on Russian cattle breeds. Particular attention is dedicated to DNA polymorphisms in the genes encoding transcription factors, which can potentially affect a large number of traits. The results of association analyses are summarized in a table, and they present the progress of research in this area in recent years. Our analysis indicates that the majority of SNPs, which are associated with significant effects on milk production traits, are probably in a linkage disequilibrium with yet unknown mutations. The identification of functionally significant DNA polymorphisms and other genetic factors (epimutations, CNV) is necessary for effective marker-assisted selection and genomic selection of dairy cattle breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Falconer, D.S., Mackay, T.F.C., Introduction to Quantitative Genetics, Burnt Mill: Longman, 1996.

    Google Scholar 

  2. Lynch, M. and Walsh, J.B., Genetics and Analysis of Quantitative Traits, Sunderland, MA: Sinauer, 1998.

    Google Scholar 

  3. Smaragdov, M.G., Genomic selection as a possible accelerator of traditional selection, Russ. J. Genet., 2009, vol. 45, no. 6, pp. 633–636.

    Article  CAS  Google Scholar 

  4. Smaragdov, M.G., Genomic selection of milk cattle: the practical application over five years, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1089–1097.

    Article  CAS  Google Scholar 

  5. Meuwissen, T., Hayes, B., and Goddard, M., Accelerating improvement of livestock with genomic selection, Annu. Rev. Anim. Biosci., 2013, vol. 1, pp. 221–237.

    Article  PubMed  Google Scholar 

  6. Hu, Z.L., Park, C.A., Wu, X.L., and Reecy, J.M., Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era, Nucleic Acids Res., 2013, vol. 41, pp. D871–D879.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Weller, J.I. and Ron, M., Invited review: quantitative trait nucleotide determination in the era of genomic selection, J. Dairy Sci., 2011, vol. 94, no. 3, pp. 1082–1090.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, L., Zhang, L.P., Yuan, Z.R., et al., Polymorphism of SREBP1 is associated with beef fatty acid composition in Simmental bulls, Genet. Mol. Res., 2013, vol. 12, no. 4, pp. 5802–5809.

    Article  CAS  PubMed  Google Scholar 

  9. McDaneld, T.G. Kuehn, L.A., Thomas, M.G., et al., Deletion on chromosome 5 associated with decreased reproductive efficiency in female cattle, J. Anim. Sci., 2014, vol. 92, no. 4, pp. 1378–1384.

    Article  CAS  PubMed  Google Scholar 

  10. Hou, Y., Bickhart, D.M., Hvinden, M., et al., Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array, BMC Genomics, 2012, vol. 13, p. 376.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Seroussi, E., Glick, G., Shirak, A., et al., Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs, BMC Genomics, 2010, vol. 11, p. 673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhang, L., Jia, S., Yang, M., et al., Detection of copy number variations and their effects in Chinese bulls, BMC Genomics, 2014, vol. 15, p. 480.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sherry, S.T., Ward, M.H., Kholodov, M., et al., dbSNP: the NCBI database of genetic variation, Nucleic Acids Res., 2001, vol. 29, no. 1, pp. 308–311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Karolchik, D., Barber, G.P., Casper, J., et al., The UCSC Genome Browser Database: 2014 update, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. D764–D770.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Daetwyler, H.D., Capitan, A., Pausch, H., et al., Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle, Nat. Genet., 2014, vol. 46, no. 8, pp. 858–865.

    Article  CAS  PubMed  Google Scholar 

  16. Smaragdov, M.G., Genetic mapping of loci responsible for milk production traits in dairy cattle, Russ. J. Genet., 2006, vol. 42, no. 1, pp 1–15.

    Article  CAS  Google Scholar 

  17. Smaragdov, M.G., Analysis of chromosomal localization of loci controlling milk production traits in cattle, Russ. J. Genet., 2008, vol. 44, no. 6, pp. 722–726.

    Article  CAS  Google Scholar 

  18. Ibeagha-Awemu, E.M., Kgwatalala, P., and Zhao, X., A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig, Mamm. Genome, 2008, vol. 19, no. 9, pp. 591–617.

    Article  CAS  PubMed  Google Scholar 

  19. Zinov’eva, N.A., Kostyunina, O.V., Gladyr’, E.A., et al., The role of DNA markers of agricultural animals’ productivity traits, Zootekhniya, 2010, no. 1, pp. 8–10.

    Google Scholar 

  20. Goddard, M.E. and Hayes, B.J., Mapping genes for complex traits in domestic animals and their use in breeding programs, Nat. Rev. Genet., 2009, vol. 10, no. 6, pp. 381–391.

    Article  CAS  PubMed  Google Scholar 

  21. Hayes, B.J., Lewin, H.A., and Goddard, M.E., The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation, Trends Genet., 2013, vol. 29, no. 4, pp. 206–214.

    Article  CAS  PubMed  Google Scholar 

  22. Lemay, D.G., Pollard, K.S., Martin, W.F., et al., From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome, PLoS One, 2013, vol. 8, no. 9. e75030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lemay, D.G., Hovey, R.C., Hartono, S.R., et al., Sequencing the transcriptome of milk production: milk trumps mammary tissue, BMC Genomics, 2013, vol. 14, p. 872.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lemay, D.G., Lynn, D.J., Martin, W.F., et al., The bovine lactation genome: insights into the evolution of mammalian milk, Genome Biol., 2009, vol. 10, no. 4, p. R43.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lemay, D.G., Neville, M.C., Rudolph, M.C., et al., Gene regulatory networks in lactation: identification of global principles using bioinformatics, BMC Syst. Biol., 2007, vol. 27, no. 1, p. 56.

    Article  Google Scholar 

  26. Grisart, B., Coppieters, W., Farnir, F., et al., Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition, Genome Res., 2002, vol. 12, pp. 222–231.

    Article  CAS  PubMed  Google Scholar 

  27. Kostyunina, O.V., Zinov’eva, N.A., Yul’met’eva, Yu.R., et al., Relation of DGAT1 polymorphism with indicators of milk production among cows of different breeds, Probl. Biol. Prod. Zhivotn., 2012, no. 4, pp. 63–69.

    Google Scholar 

  28. Argov-Argaman, N., Mida, K., Cohen, B.C., et al., Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane, PLoS ONE, 2013, vol. 8, no. 7. e68707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Roy, R., Ordavas, L., Zaragoza, P., et al., Association of polymorphisms in the bovine FASN gene with milk-fat content, Anim. Genet., 2006, vol. 37, pp. 215–218.

    Article  CAS  PubMed  Google Scholar 

  30. Marchitelli, C., Contarini, G., De Matteis, G., et al., Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis, J. Dairy Res., 2013, vol. 80, no. 2, pp. 165–173.

    Article  CAS  PubMed  Google Scholar 

  31. Cecchinato, A., Ribeca, C., Maurmayr, A., et al., Short communication: effects of β-lactoglobulin, stearoylcoenzyme A desaturase 1, and sterol regulatory element binding protein gene allelic variants on milk production, composition, acidity, and coagulation properties of Brown Swiss cows, J. Dairy Sci., 2012, vol. 95, no. 1, pp. 450–454.

    Article  CAS  PubMed  Google Scholar 

  32. Taniguchi, M., Utsugi, T., Oyama, K., et al., Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese black cattle, Mamm. Genome, 2004, vol. 14, pp. 142–148.

    Article  Google Scholar 

  33. Horseman, N.D. and Gregerson, K.A., Prolactin actions, J. Mol. Endocrinol., 2013, vol. 52, no. 1, pp. R95–R106.

    Article  PubMed  Google Scholar 

  34. Dong, C.H., Song, X.M., Zhang, L., et al., New insights into the prolactin-RsaI (PRL-RsaI) locus in Chinese Holstein cows and its effect on milk performance traits, Genet. Mol. Res., 2013, vol. 12, no. 4, pp. 5766–5773.

    Article  CAS  PubMed  Google Scholar 

  35. Dolmatova, I.Yu. and Il’yasov, I.G., Association of cattle growth hormone gene polymorphism with milk productivity, Russ. J. Genet., 2011, vol. 47, no. 6, pp. 720–725.

    Article  CAS  Google Scholar 

  36. Perchun, A.V., Lazebnaya, I.V., Belokurov, S.G., et al., Polymorphisms in genes CSN3, BPRL, and BGH among cows of Kostroma breed in relation with indicators of milk production, Fundam. Issled., 2012, nos. 11–12, pp. 304–308.

    Google Scholar 

  37. Khatami, S.R., Lazebnyi, O.E., Maksimenko, V.F., and Sulimova, G.E., Association of DNA polymorphisms of the growth hormone and prolactin genes with milk productivity in Yaroslavl and Black-and-White cattle, Russ. J. Genet., 2005, vol. 41, no. 2, pp. 167–173.

    Article  CAS  Google Scholar 

  38. Schielzeth, H. and Husby, A., Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations, Ann. New York Acad. Sci., 2014, vol. 1320, no. 1, pp. 35–57.

    Article  Google Scholar 

  39. Merkulova, T.I., Anan’ko, E.A., Ignat’eva, E.V., and Kolchanov, N.A., Transcription regulatory codes of eukaryotic genomes, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 29–45.

    Article  CAS  Google Scholar 

  40. Kuehn, C., Edel, C., Weikard, R., and Thaller, G., Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows, BMC Genet., 2007, vol. 8, p. 62.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gautier, M., Capitan, A., Fritz, S., et al., Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle, J. Dairy Sci., 2007, vol. 90, no. 6, pp. 2980–2988.

    Article  CAS  PubMed  Google Scholar 

  42. Kühn, C., Thaller, G., Winter, A., et al., Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle, Genetics, 2004, vol. 167, no. 4, pp. 1873–1881.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kgwatalala, P.M., Ibeagha-Awemu, E.M., Hayes, J.F., and Zhao, X., Stearoyl-CoA desaturase 1 3′UTR SNPs and their influence on milk fatty acid composition of Canadian Holstein cows, J. Anim. Breed. Genet., 2009, vol. 126, no. 5, pp. 394–403.

    Article  CAS  PubMed  Google Scholar 

  44. Balteanu, V.A., Carsai, T.C., and Vlaic, A., Identification of an intronic regulatory mutation at the buffalo αs1-casein gene that triggers the skipping of exon 6, Mol. Biol. Rep., 2013, vol. 40, no. 7, pp. 4311–4316.

    Article  CAS  PubMed  Google Scholar 

  45. Kommadath, A., Te Pas, M.F., and Smits, M.A., Gene coexpression network analysis identifies genes and biological processes shared among anterior pituitary and brain areas that affect estrous behavior in dairy cows, J. Dairy Sci., 2013, vol. 96, no. 4, pp. 2583–2595.

    Article  CAS  PubMed  Google Scholar 

  46. Turenne, N., Tiys, E., Ivanisenko, V., et al., Finding biomarkers in non-model species: literature mining of transcription factors involved in bovine embryo development, BioData Min., 2012, vol. 5, no. 1, p. 12.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Davis, S.W., Castinetti, F., Carvalho, L.R., et al., Molecular mechanisms of pituitary organogenesis: in search of novel regulatory genes, Mol. Cell. Endocrinol., 2010, vol. 323, pp. 4–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pfaffle, R. and Klammt, J., Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency, Best Pract. Res. Clin. Endocrinol. Metab., 2011, vol. 25, no. 1, pp. 43–60.

    Article  CAS  PubMed  Google Scholar 

  49. Showalter, A.D., Smith, T.P., Bennett, G.L., et al., Differential conservation of transcriptional domains of mammalian Prophet of Pit-1 proteins revealed by structural studies of the bovine gene and comparative functional analysis of the protein, Gene, 2002, vol. 291, nos. 1–2, pp. 211–221.

    Article  CAS  PubMed  Google Scholar 

  50. Lan, X.Y., Penagaricano, F., DeJung, L., et al., Short communication: a missense mutation in the PROP1 (prophet of Pit 1) gene affects male fertility and milk production traits in the US Holstein population, J. Dairy Sci., 2013, vol. 96, no. 2, pp. 1255–1257.

    Article  CAS  PubMed  Google Scholar 

  51. Parmentier, I., Portetelle, D., Gengler, N., et al., Candidate gene markers associated with somatotropic axis and milk selection, Domest. Anim. Endocrinol., 1999, vol. 17, nos. 2–3, pp. 139–148.

    Article  CAS  PubMed  Google Scholar 

  52. Drozdov, E.V., Zayakin, V.V., and Nam, I.Ya., Allelic polymorphism of the PIT-1 gene among cattle herds of Bryansk region and its relationship with milk production, Izv. Samarskogo Nauchn. Tsentra Ross. Akad. Nauk, 2011, vol. 13, no. 5(3), pp. 235–239.

    Google Scholar 

  53. Heidari, M., Azari, M.A., Hasani, S., et al., Effect of polymorphic variants of GH, Pit-1, and beta-LG genes on milk production of Holstein cows, Rus. J. Genet., 2012, vol. 48, no. 4, pp. 503–507.

    Article  CAS  Google Scholar 

  54. Buntin, J.D. and Buntin, L., Increased STAT5 signaling in the ring dove brain in response to prolactin administration and spontaneous elevations in prolactin during the breeding cycle, Gen. Comp. Endocrinol., 2014, vol. 200, pp. 1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Feigerlova, E., Hwa, V., Derr, M.A., and Rosenfeld, R.G., Current issues on molecular diagnosis of GH signaling defects, Endocr. Dev., 2013, vol. 24, pp. 118–127.

    CAS  PubMed  Google Scholar 

  56. He, X., Chu, M.X., Qiao, L., et al., Polymorphisms of STAT5a gene and their association with milk production traits in Holstein cows, Mol. Biol. Rep., 2012, vol. 39, no. 3, pp. 2901–2907.

    Article  CAS  PubMed  Google Scholar 

  57. Li, Q.L., Ju, Z.H., Huang, J.M., et al., Two novel SNPs in HSF1 gene are associated with thermal tolerance traits in Chinese Holstein cattle, DNA Cell Biol., 2011, vol. 30, no. 4, pp. 247–254.

    Article  CAS  PubMed  Google Scholar 

  58. Starita, L.M. and Parvin, J.D., The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair, Curr. Opin. Cell Biol., 2003, vol. 15, no. 3, pp. 345–350.

    Article  CAS  PubMed  Google Scholar 

  59. Yuan, Z., Li, J., Li, J., et al., Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle, Gene, 2012, vol. 505, no. 1, pp. 190–194.

    Article  CAS  PubMed  Google Scholar 

  60. Pires, N.D. and Grossniklaus, U., Different yet similar: evolution of imprinting in flowering plants and mammals, F1000Prime Rep., 2014, vol. 6, p. 63.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Qureshi, I.A. and Mehler, M.F., An evolving view of epigenetic complexity in the brain, Philos. Trans. R. Soc., B., 2014, vol. 369, no. 1652, p. 20130506.

    Article  Google Scholar 

  62. Schönheit, J., Leutz, A., and Rosenbauer, F., Chromatin dynamics during differentiation of myeloid cells, J. Mol. Biol., 2014, vol. 27. pii S0022-2836(14)00458-6. doi 10.1016/j.jmb.2014.08.015

  63. Rijnkels, M., Freeman-Zadrowski, C., Hernandez, J., et al., Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation, PLoS One, 2013, vol. 8, no. 1. e53270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Driscoll, E.E., Hoffman, J.I., Green, L.E., et al., A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd, PLoS One, 2011, vol. 6, no. 4. e18806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Goryacheva, T.S. and Goncharenko, G.M., Polymorphism in κ-casein and prolactin genes and their influence on dairy productivity of cows of the Black-and-White breed, S-kh. Biol., 2010, no. 4, pp. 51–54.

    Google Scholar 

  66. Goryacheva, T.S., Polymorphism in κ-casein and its influence on dairy productivity of cows of the Simmental breed in Republic of Altai, Sib. Vestn. S-kh. Nauki, 2011, nos. 11–12, pp. 60–64.

    Google Scholar 

  67. Fontanesi, L., Calo, D.G., Galimberti, G., et al., A candidate gene association study for nine economically important traits in Italian Holstein cattle, Anim. Genet., 2014, vol. 45, no. 4, pp. 576–580.

    Article  CAS  PubMed  Google Scholar 

  68. Leyva-Baca, I., Schenkel, F., Martin, J., and Karrow, N.A., Polymorphisms in the 5’ upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada, J. Dairy Sci., 2008, vol. 91, no. 1, pp. 407–417.

    Article  CAS  PubMed  Google Scholar 

  69. Beecher, C., Daly, M., Childs, S., et al., Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle, BMC Genet., 2010, vol. 11, p. 99.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Nafikov, R.A., Schoonmaker, J.P., Korn, K.T., et al., Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk, J. Dairy Sci., 2013, vol. 96, no. 9, pp. 6007–6021.

    Article  CAS  PubMed  Google Scholar 

  71. Ibeagha-Awemu, E.M., Akwanji, K.A., Beaudoin, F., and Zhao, X., Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows, BMC Genet., 2014, vol. 15, p. 25.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Alim, M.A., Wang, P., Wu, X.P., et al., Effect of FASN gene on milk yield and milk composition in the Chinese Holstein dairy population, Anim. Genet., 2014, vol. 45, no. 1, pp. 111–113.

    Article  CAS  PubMed  Google Scholar 

  73. Cory, A.T., Price, C.A., Lefebvre, R., and Palin, M.F., Identification of single nucleotide polymorphisms in the bovine follicle-stimulating hormone receptor and effects of genotypes on superovulatory response traits, Anim. Genet., 2013, vol. 44, no. 2, pp. 197–201.

    Article  CAS  PubMed  Google Scholar 

  74. Deb, R., Sajjanar, B., Singh, U., et al., Promoter variants at AP2 box region of Hsp70.1 affect thermal stress response and milk production traits in Frieswal cross bred cattle, Gene, 2013, vol. 532, no. 2, pp. 230–235.

    Article  CAS  PubMed  Google Scholar 

  75. Abdolmohammadi, A. and Zamani, P., SNP exploring in the middle and terminal regions of the IGF-1 gene and association with production and reproduction traits in Holstein cattle, Gene, 2014, vol. 540, no. 1, pp. 92–95.

    Article  CAS  PubMed  Google Scholar 

  76. Canovas, A., Rincon, G., Islas-Trejo, A., et al., RNA sequencing to study gene expression and single nucleotide polymorphism variation associated with citrate content in cow milk, J. Dairy Sci., 2013, vol. 96, no. 4, pp. 2637–2648.

    Article  CAS  PubMed  Google Scholar 

  77. O’Halloran, F., Berry, D.P., Bahar, B., et al., Polymorphisms in the bovine lactoferrin promoter are associated with reproductive performance and somatic cell count, J. Dairy Sci., 2010, vol. 93, no. 3, pp. 1253–1259.

    Article  PubMed  Google Scholar 

  78. Dolmatova, I.Yu., Gareeva, I.T., and Il’yasov, A.G., Effect of polymorphic variants of cattle beta-lactoglobulin gene on milk production, Vestn. Bashkir. Gos. Agrar. Univ., 2010, no. 1, pp. 18–22.

    Google Scholar 

  79. Selionova, M.I., Antonenko, T.I., and Chalchenko, A.B., The polymorphism of BOLA-DRB3 gene and the level of milk production among animals of different genotypes, Agrar. Nauchn. Zh., 2012, no. 10, pp. 85–87.

    Google Scholar 

  80. Kupper, J.D., Brandt, H.R., and Erhardt, G., Genetic association between NOD2 polymorphism and infection status by Mycobacterium avium ssp. paratuberculosis in German Holstein cattle, Anim. Genet., 2014, vol. 45, no. 1, pp. 114–116.

    Article  CAS  PubMed  Google Scholar 

  81. Homer, E.M., Derecka, K., Webb, R., and Garnsworthy, P.C., Mutations in genes involved in oestrous cycle associated expression of oestrus, Anim. Reprod. Sci., 2013, vol. 142, nos. 3–4, pp. 106–112.

    Article  CAS  PubMed  Google Scholar 

  82. Fang, W., He, J., Huang, J., et al., Study on genetic variations of PPARα gene and its effects on thermal tolerance in Chinese Holstein, Mol. Biol. Rep., 2014, vol. 41, no. 3, pp. 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  83. Drozdov, E.V., Zayakin, V.V., and Nam, I.Ya., Allelic polymorphism of the PIT-1 gene in cattle herds of Bryansk oblast and its relationship with milk production, Izv. Samarskogo Nauchn. Tsentra Ross. Akad. Nauk, 2011, vol. 13, nos. 5–3, p. 235.

    Google Scholar 

  84. Guo, F., Yang, B., Ju, Z.H., et al., Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls, Reproduction, 2013, vol. 147, no. 2, pp. 241–252.

    Article  PubMed  Google Scholar 

  85. Nafikov, R.A., Schoonmaker, J.P., Korn, K.T., et al., Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition, J. Dairy Sci., 2013, vol. 96, no. 4, pp. 2605–2616.

    Article  CAS  PubMed  Google Scholar 

  86. Carvajal, A.M., Huircan, P., and Lepori, A., Single nucleotide polymorphisms in immunity-related genes and their association with mastitis in Chilean dairy cattle, Genet. Mol. Res., 2013, vol. 12, no. 3, pp. 2702–2711.

    Article  CAS  PubMed  Google Scholar 

  87. Gao, Q., Ju, Z., Zhang, Y., et al., Association of TNP2 gene polymorphisms of the bta-miR-154 target site with the semen quality traits of Chinese Holstein bulls, PLoS One, 2014, vol. 9, no. 1. e84355

    Article  PubMed Central  PubMed  Google Scholar 

  88. Yudin, N.S., Aitnazarov, R.B., Voevoda, M.I., et al., Association of polymorphism harbored by tumor necrosis factor alpha gene and sex of calf with lactation performance in cattle, Asian Australas. J. Anim. Sci., 2013, vol. 26, no. 10, pp. 1379–1387.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Kochnev, N.N., Krytsyna, T.I., Aitnazarov, R.B., et al., The influence of -824 A/G polymorphism of the tumor necrosis factor gene on milk production in Red Steppe breed cows, Sib. Vestn. S-kh. Nauki, 2014, no. 4, pp. 68–73.

    Google Scholar 

  90. Lyukhanov, M.P., Korotkevich, O.S., Sebezhko, O.I., and Yudin, N.S., SNPs in the cattle population of Red Steppe breed, Sovrem. Probl. Nauki Obraz., 2014, no. 1, p. 326.

    Google Scholar 

  91. Krytsyna, T.I., Kochnev, N.N., Aitnazarov, R.B., et al., Association of -824 A/G polymorphism of the tumor necrosis factor gene with growth rates of calves, Vestn. Novosib. Gos. Agrar. Univ., 2014, no. 3, pp. 71–75.

    Google Scholar 

  92. Kalashnikova, L.A., Khabibrakhmanova, Ya.A., and Tinaev, A.Sh., Effect of polymorphism of milk protein and hormone genes on milk productivity of Black Pied cows, Russ. Agric. Sci., 2009, vol. 35, no. 3, pp. 192–195.

    Article  Google Scholar 

  93. Penagaricano, F. and Khatib, H., Association of milk protein genes with fertilization rate and early embryonic development in Holstein dairy cattle, J. Dairy Res., 2012, vol. 79, no. 1, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

  94. Huang, W., Penagaricano, F., Ahmad, K.R., et al., Association between milk protein gene variants and protein composition traits in dairy cattle, J. Dairy Sci., 2012, vol. 95, no. 1, pp. 440–449.

    Article  CAS  PubMed  Google Scholar 

  95. Poulsen, N.A., Bertelsen, H.P., Jensen, H.B., et al., The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds, J. Dairy Sci., 2013, vol. 96, no. 8, pp. 4830–4842.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Yudin.

Additional information

Original Russian Text © N.S. Yudin, M.I. Voevoda, 2015, published in Genetika, 2015, Vol. 51, No. 5, pp. 600–612.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, N.S., Voevoda, M.I. Molecular genetic markers of economically important traits in dairy cattle. Russ J Genet 51, 506–517 (2015). https://doi.org/10.1134/S1022795415050087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415050087

Keywords

Navigation