Skip to main content
Log in

Peculiarities of phosphoglycerate kinase-1 pseudogene evolution in Schrenck salamander (Salamandrella schrenckii Strauch 1870)

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Processed copies of genes generally evolve in neutral mode as pseudogenes, however, some of them might be important sources of new functional genes. The ψPGK1 pseudogene has been discovered in Schrenck salamander (Salamandrella schrenckii, Amphibia, Caudata, Hynobiidae) via polymerase chain reaction used to amplify the phosphoglycerate kinase 1 gene (PGK1). This pseudogene is an intronless copy of PGK1 gene absent of exon 6. Analysis of ψPGK1 pseudogene polymorphism has demonstrated that it lacks mutations, which results in shifts in the stop codons and reading frames, as well as that the interspecies variation of this pseudogene was inconsistent with the neutral model of evolution. In addition, the pattern of phylogeographic differentiation of the ψPGK1 variants mainly coincides with that observed in mitochondrial DNA. These observations allow it to be suggested that the ψPGK1 pseudogene is a new functional gene in the Schrenck salamander.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, S., Storey, J.M., and Storey, K.B., Phosphoglycerate kinase 1 expression responds to freezing, anoxia, and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica, J. Exp. Zool., 2009, vol. 311A, pp. 57–67.

    Article  CAS  Google Scholar 

  2. Firth, J.D., Ebert, B.L., Pugh, C.W., and Ratcliffe, P.J., Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 30 enhancer, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 6496–6500.

    Article  PubMed  CAS  Google Scholar 

  3. Liu, Y.-J., Zheng, D., Balasubramanian, S., et al., Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity, BMC Genomics, 2009, vol. 10, p. 480.

    Article  PubMed  Google Scholar 

  4. Balakirev, E.S. and Aiyala, F.J., Psevdogenes: Conservation of structure, expression and function, Zh. Obshch. Biol., 2004, vol. 65, no. 4, pp. 306–321.

    PubMed  CAS  Google Scholar 

  5. Tam, O.H., Aravin, A.A., Stein, P., et al., Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes, Nature, 2008, vol. 453, pp. 534–538.

    Article  PubMed  CAS  Google Scholar 

  6. Malyarchuk, B.A., Berman, D.I., and Derenko, M.V., Centers of genetic diversity and origin of newts of the genus Salamandrella (Salamandrella keyserlingii and Salamandrella schrenckii, Amphibia, Caudata, Hynobiidae), Dokl. Akad. Nauk, 2010, vol. 435, no. 1–6, pp. 448–452.

    CAS  Google Scholar 

  7. Berman, D.I., Derenko, M.V., Malyarchuk, B.A., et al., Intraspecific genetic differentiation in Siberian newt (Salamandrella keyserlingii, Amphibia, Caudata) and the cryptic species S. schrenskii from southeastern Russia, Zool. Zh., 2005, vol. 84, no. 11, pp. 1374–1388.

    Google Scholar 

  8. Rozen, S. and Skaletsky, H.J., Primer3 on the www for general users and for biologist programmers, Bioinformatics Methods and Protocols: Methods in Molecular Biology, Krawetz, S. and Misener, S., Eds., Totowa, NJ: Humana, 2000, pp. 365–386.

    Google Scholar 

  9. Tamura, K., Peterson, D., Peterson, N., et al., Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  10. Librado, P. and Rozas, J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452.

    Article  PubMed  CAS  Google Scholar 

  11. Nielsen, R. and Yang, Z., Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene, Genetics, 1998, vol. 148, pp. 929–936.

    PubMed  CAS  Google Scholar 

  12. McDonald, J.H. and Kreitman, M., Adaptive protein evolution at the Adh locus in Drosophila, Nature, 1991, vol. 351, pp. 652–654.

    Article  PubMed  CAS  Google Scholar 

  13. Jukes, T.H. and Cantor, C.R., Evolution of protein molecules, Mammalian Protein Metabolism, Munro, H.N., Ed., New York: Academic, 1969, pp. 121–132.

    Google Scholar 

  14. Michelson, A.M., Blake, C.C.F., Evans, S.T., and Orkin, S.H., Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 6965–6969.

    Article  PubMed  CAS  Google Scholar 

  15. Malyarchuk, B.A., Derenko, M.V., Berman, D.I., et al., Genetic structure of Schrenck newt Salamandrella schrenckii populations by mitochondrial cytochrome b variation, Mol. Biol. (Moscow), 2009, vol. 43, no. 1, pp. 47–54.

    Article  CAS  Google Scholar 

  16. Svensson, O., Arvestad, L., and Lagergren, J., Genome-wide survey for biologically functional pseudogenes, PLoS Comput. Biol., 2006, vol. 2, p. e46

    Article  PubMed  Google Scholar 

  17. Jeffares, D.C., Penkett, C.J., and Bahler, J., Rapidly regulated genes are intron poor, Trends Genet., 2008, vol. 24, pp. 375–378.

    Article  PubMed  CAS  Google Scholar 

  18. Long, M. and Langley, C.H., Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila, Science, 1993, vol. 260, pp. 91–95.

    Article  PubMed  CAS  Google Scholar 

  19. Hirotsune, S., Yoshida, N., Chen, A., et al., An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene, Nature, 2003, vol. 423, pp. 91–96.

    Article  PubMed  CAS  Google Scholar 

  20. Betrán, E., Wang, W., Jin, L., and Long, M., Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene, Mol. Biol. Evol., 2002, vol. 19, pp. 654–663.

    Article  PubMed  Google Scholar 

  21. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

  22. McCarrey, J.R., Nucleotide sequence of the promoter region of a tissue-specific human retroposon: Comparison with its housekeeping progenitor, Gene, 1987, vol. 61, pp. 291–298.

    Article  PubMed  CAS  Google Scholar 

  23. Maestre, J., Tchenio, T., Dhellin, O., and Heidmann, T., mRNA retroposition in human cells: Processed pseudogene formation, EMBO J., 1995, vol. 14, pp. 6333–6338.

    PubMed  CAS  Google Scholar 

  24. Dierick, H.A., Mercer, J.F.B., and Glover, T.W., A phosphoglycerate mutase brain isoform (PGAM1) pseudogene is localized within the human Menkes disease gene (ATP7A), Gene, 1997, vol. 198, pp. 37–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Malyarchuk.

Additional information

Original Russian Text © B.A. Malyarchuk, G.A. Denisova, M.V. Derenko, 2013, published in Genetika, 2013, Vol. 49, No. 7, pp. 830–837.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malyarchuk, B.A., Denisova, G.A. & Derenko, M.V. Peculiarities of phosphoglycerate kinase-1 pseudogene evolution in Schrenck salamander (Salamandrella schrenckii Strauch 1870). Russ J Genet 49, 722–729 (2013). https://doi.org/10.1134/S1022795413070107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413070107

Keywords

Navigation