Skip to main content
Log in

Molecular genetic relationships and some issues of systematics of rock lizards of the genus Darevskia (Squamata: Lacertidae) based on locus analysis of SINE-type repeats (Squam1)

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

In memoriam of I.S. Darevskii

Abstract

To study the molecular genetic relationships and correlate them with the taxonomy within the complex of lacertid lizards of the genus Darevskia, the locus analysis of the copies of the SINE-type repeat (Squam1) specific for the order Squamata was used. It was demonstrated that one of the loci (No. 34) contained the Squam1 copy insert in all species and subspecies of the examined genus. SINE allelic copies in some of the loci contained large indels and specific sets of mutations. The allelic variant M (medium, about 340 bp) was found most frequently; it was detected in all subspecies of D. saxicola (saxicola, darevskii, szczerbaki, lindholmi) and in most of the other species of the genus. Two species, D. derjugini and D. praticola, differed from the other species in the presence of long (L) and short (S) alleles. The longest allele was characteristic of the D. derjugini population from the Northern Caucasus (L, 379 bp, ssp. silvatica), while the shortest allele (97 bp) united the derjugini and barani subspecies. The second allele S (279 bp) characterizes the subspecies D. praticola praticola, some individuals of which also carry allele M. The second subspecies, D. p. pontica, contains allele L2, which differs from all other medium alleles in the presence of strictly specific short indel. In addition to apomorphic indels, the specificity and mutation distribution patterns among the Squam1 alleles were also examined. An analysis of the NJ tree indicated the concordance between morphological and molecular genetic characters of the species derjugini, praticola, and saxicola. Furthermore, four subspecies of D. saxicola were much closer to each other than the subspecies within the first two species; D. d. silvatica and the group of D. d. derjugini + barani were clearly separated. It cannot be excluded that populations from Azerbaijan and Serbia can be treated as the independent subspecies of D. praticola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grechko, V.V., The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers, Mol. Biol. (Moscow), 2013, vol. 47, no. 1, pp. 55–76.

    Article  CAS  Google Scholar 

  2. Siepel, A., Bejerano, G., Pedersen, J.S., et al., Evolutionary conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res., 2005, vol. 15, pp. 1034–1050.

    Article  PubMed  CAS  Google Scholar 

  3. Tollis, M., Ausubel, G., and Boissinot, S., Multilocus phylogeographic and population genetic analysis of Anolis carolinensis historical demography of a genomic model species, PLoS ONE, 2012, vol. 7. e38474

    Article  PubMed  CAS  Google Scholar 

  4. Tatusov, R.L., Koonin, E.V., and Lipman, D.J., A genome perspective on protein families, Science, 1997, vol. 278, pp. 631–637.

    Article  PubMed  CAS  Google Scholar 

  5. Shen, X.X., Liang, D., Wen, J.Z., and Zhang, P., Multiple genome alignments facilitate development of nuclear coding protein locus (NPCL) markers: A case study of tetrapod phylogeny focusing on the position of turtles, Mol. Biol. Evol., 2011, vol. 28, pp. 3237–3252.

    Article  PubMed  CAS  Google Scholar 

  6. Brito, P.N. and Edwards, S.V., Multilocus phylogeography and phylogenetics using sequence-based markers, Genetics, 2009, vol. 135, pp, 439–455.

    Google Scholar 

  7. Tezuka, A., Matsushima, N., Nemoto, Y., et al., Comprehensive primer design for analysis of population genetics in non-sequenced organisms, PLoS ONE, 2012, vol. 7, p. e32314.

    Article  PubMed  CAS  Google Scholar 

  8. Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (The Development of Evolutionary Ideas in Biology), Moscow: Progress-Traditsiya, 1999.

    Google Scholar 

  9. Shedlock, A.M., Takahashi, K., and Okada, N., SINEs of speciation: Tracking lineages with retroposons, Trends Ecol. Evol., 2004, vol. 19, pp. 545–553.

    Article  PubMed  Google Scholar 

  10. Kramerov, D.A. and Vasetskii, N.S., Short interspersed repetitive sequences (SINEs) and their use as a phylogenetic tool, Mol. Biol. (Moscow), 2009, vol. 43, pp. 795–806.

    Article  CAS  Google Scholar 

  11. Ray, D.A., SINEs of progress: Mobile elements applications to molecular ecology, Mol. Ecol., 2007, vol. 16, pp. 19–33.

    Article  PubMed  CAS  Google Scholar 

  12. Nikaido, M., Nishihara, H., Hukumoto, Y., and Okada, N., Ancient SINEs from African endemic mammals, Mol. Biol. Evol., 2003, vol. 20, pp. 522–527.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, Z., Xu, S., Zhou, K., and Yang, G., Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences, BMC Evol. Biol., 2011, vol. 11, pp. 314–329.

    Article  PubMed  Google Scholar 

  14. Takahashi, K., Terai, Y., Nishida, M., and Okada, N., A novel family of short interspersed repeatitive elements (SINE) from cichlids: The patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika, Mol. Biol. Evol., 1998, vol. 15, pp. 301–407.

    Article  Google Scholar 

  15. Okada, N., Sheldok, A.M., and Nikaido, M., Retroposon mapping in molecular systematics, Methods Mol. Biol., 2004, vol. 260, pp. 189–226.

    PubMed  CAS  Google Scholar 

  16. Nishihara, M. and Okada, N., Retroposons: Genetic footprints on the evolutionary paths of life, Methods Mol. Biol., 2008, vol. 422, pp. 201–205.

    Article  PubMed  CAS  Google Scholar 

  17. Kramerov, D.A. and Vassetzky, N.S., Short retroposons in eukaryotic genomes, Int. Rev. Cytol., 2005, vol. 247, pp. 165–221.

    Article  PubMed  CAS  Google Scholar 

  18. Kosushkin, C.A., Borodulina, O.R., Grechko, V.V., and Kramerov, D.A., New family of interspersed repeats from squamate reptiles, Mol. Biol. (Moscow), 2006, vol. 43, pp. 378–382.

    Google Scholar 

  19. Piskurek, O., Austin, C.C., and Okada, N., Sauria SINEs: Novel short interspersed retroposable elements that are widespread in reptile genomes, J. Mol. Evol., 2006, vol. 62, pp. 630–644.

    Article  PubMed  CAS  Google Scholar 

  20. Darevsky, I.S., Rock Lizards of the Caucasus (Systematics, Ecology and Phylogenesis of the Polymorphic Groups of Rock Lizards of the Subgenus Archaeolacerts), 1967, Leningrad: Nauka.

    Google Scholar 

  21. Arribas, O.J., Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta, Mertens, 1921, s. lato) and their relationships among the Eurasian lacertid radiation, Russ. J. Herpetol., 1999, vol. 6, pp. 1–22.

    Google Scholar 

  22. Arnold, E.N., Arribas, O., and Carranza, S., Systematics of the Palearctic and oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with description of eight new genera, Zootaxa, 2007, vol. 1430, pp. 1–86.

    Google Scholar 

  23. Sos, T., Kecskes, A., Hegyeli, Z., and Maroshi, Z., New data on the distribution of Darevskia pontica (Lantz and Cyren, 1919) (Reptilia: Lacertidae) in Romania: Filling a significant gap, Acta Herpetol., 2012, vol. 7, pp. 175–180.

    Google Scholar 

  24. Fedorov, A.N., Fedorova, L.V., Grechko, V.V., et al., Variable and invariable DNA repeat characters revealed by taxonoprint approach are useful for molecular systematics, J. Mol. Evol., 1999, vol. 47, pp. 69–76.

    Article  Google Scholar 

  25. Ryabinina, N.L., Bannikova, A.A., Kosushkin, S.A., et al., Estimation of subspecific level of differentiation in Caucasian lizards of the genus Darevskia (syn. Lacerta saxicola complex, Lacertidae, Sauria) using genome DNA markers, Russ. J. Herpetol., 2002, vol. 9, pp.185–194.

    Google Scholar 

  26. Ciobanu, D.G., Grechko, V.V., Kramerov, D.A., and Darevsky, I.S., Molecular evolution of satellite DNA CLsat in lizards from the genus Darevskia (Sauria: Lacertidae): Correlation with species diversity, Russ. J. Genet, 2003, vol. 39, pp. 1527–1541.

    Article  Google Scholar 

  27. Grechko, V.V., Ciobanu, D.G., Kosushkin, S.A., and Kramerov, D.A., Molecular evolution of satDNA repeats and speciation of lizards of the genus Darevskia, Genome, 2006, vol. 49, pp. 1297–1307.

    Article  PubMed  CAS  Google Scholar 

  28. Tuniyev, S.B. and Ostrovskich, S.B., Intraspecies systematics and geographical variability of the lizard Darevskia derjugini (Nicolsky, 1898) (Reptilia: Squamata) in north-west of the areal, Mod. Herpetol., 2006, vol. 5–6, pp. 71–92.

    Google Scholar 

  29. Bischoff, W., Bemerkungen zur innerartlichen Gliederung und zur Verbeitung der Artwiner Eidechse (Lacerta derjugini Nikolskij, 1898) an den Sudhangen der Groben Kaukasus (Sauria: Lacertidae), Salamandra, 1984, vol. 2–3, pp. 101–111.

    Google Scholar 

  30. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  31. Nicholas, K.B. and Nicholas, H.B., Jr. GeneDoc: A Tool for Editing and Annotating Multiple Sequence Alignments, Distributed by the author, 1997.

    Google Scholar 

  32. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  33. Kido, Y., Himberg, M., Takasaki, N., and Okada, N., Amplification of distinct subfamilies of short interspersed elements during evolution of the Salmonidae, J. Mol. Biol., 1994, vol. 241, pp. 633–644.

    Article  PubMed  CAS  Google Scholar 

  34. van de Lagemaat, L.N., Gagnier, L., Medstrand, P., and Mager, D.L., Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates, Genome Res., 2005, vol. 15, pp. 1243–1249.

    Article  PubMed  Google Scholar 

  35. Ryabinina, N.L., Grechko, V.V., Semenova, S.K., and Darevsky, I.S., On the hybridogenous origin of the parthenogenetic species Lacerta dahli and Lacerta rostombekovi revealed by RAPD technique, Russ. J. Herpetol., 1999, vol. 6, pp. 55–60.

    Google Scholar 

  36. Ciobanu, D.G., Rudykh, I.V., Ryabinina, N.L., et al. Reticulate evolution of parthenospecies of the Lacertidae rock izards: Inheritance of CLsat tandem repeats and anonymous RAPD markers, Mol. Biol. (Moscow), 2002, vol. 36, pp. 296–306.

    Google Scholar 

  37. Tuniyev, S.B., Doronin, I.A., Kidov, A.A., and Tuniyev, B.S., Systematic and geographical variability of meadow lizard, Darevskia praticola (Reptilia: Sauria) in the Caucasus, Russ. J. Herpetol., 2011, vol. 18, pp. 295–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kosushkin.

Additional information

Original Russian Text © S.A. Kosushkin, V.V. Grechko, 2013, published in Genetika, 2013, Vol. 49, No. 8, pp. 986–999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosushkin, S.A., Grechko, V.V. Molecular genetic relationships and some issues of systematics of rock lizards of the genus Darevskia (Squamata: Lacertidae) based on locus analysis of SINE-type repeats (Squam1). Russ J Genet 49, 857–869 (2013). https://doi.org/10.1134/S1022795413070089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413070089

Keywords

Navigation