Skip to main content
Log in

Comparative analysis of tobacco and Arabidopsis insertional mutants, transformed with equal vector constructions

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We have analyzed genetic effects of heterologous plant genes insertion on genome functioning of higher plants, belonging to different systematic groups (tobacco, Arabidopsis). Plants of different species were responding differently to the insertion of the same transgene, which is likely to be associated with the location of alien DNA insertion and could manifest in morphological changes spectrum and target gene expression level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koncz, C., Nemeth, K., Redei, G.P., and Schell, J., T-DNA Insertional Mutagenesis in Arabidopsis, Plant. Mol. Biol., 1992, vol. 20, pp. 963–976.

    Article  PubMed  CAS  Google Scholar 

  2. Gheysen, G., Villarroel, R., and van Montagu, M., Illegitimate Recombination in Plants: A Model for T-DNA Integration, Genes Dev., 1991, vol. 5, pp. 287–297.

    Article  PubMed  CAS  Google Scholar 

  3. Ohba, T., Yoshioka, Y., Machida, C., and Machida, Y., DNA Rearrangement Associated with the Integration of T-DNA in Tobacco: An Example for Multiple Duplications of DNA around the Integration Target, Plant J., 1995, vol. 7, pp. 157–164.

    Article  PubMed  CAS  Google Scholar 

  4. Nacry, P., Camilleri, C., Coutial, B., et al., Major Chromosomal Rearrangements Induced by T-DNA Transformation in Arabidopsis, Genetics, 1998, vol. 149, pp. 641–650.

    PubMed  CAS  Google Scholar 

  5. Clark, K.A. and Krysan, P.J., Chromosomal Translocations Are the Common Phenomenon in Arabidopsis thaliana T-DNA Insertion Lines, Plant J., 2010, vol. 64, pp. 990–1001.

    Article  PubMed  CAS  Google Scholar 

  6. Ezhova, T.A., Lebedeva, O.V., Ogarkova, O.A., et al., Arabidopsis thaliana—Model Object of Plant Genetics, Moscow: MaksPress, 2003.

    Google Scholar 

  7. http://www.arabidopsis.org/info/agi.jsp.

  8. Feldman, K.A. and Marks, M.D., Agrobacterium-Mediated Transformation of Germinating Seeds of Arabidopsis thaliana, Mol. Gen. Genet., 1987, vol. 208, pp. 1–9.

    Article  Google Scholar 

  9. Feldman, K.A., T-DNA Insertion Mutagenesis in Arabidopsis Mutational Spectrum, Plant J., 1991, vol. 1, pp. 71–82.

    Article  Google Scholar 

  10. Ogarkova, O.A., Khadeeva, N.V., Gordon, N.Yu., et al., Insertional Mutagenesis in Arabidopsis thaliana: The Obtaining of Morphological Mutants, Russ. J. Genet., 1997, vol. 33, no. 2, pp. 168–172.

    CAS  Google Scholar 

  11. Ogarkova, O.A., Khadeeva, N.V., Yakovleva, E.Yu., and Tarasov, V.A., Transgenic Tobacco Lines for the Registration of Induced Recombination in Direct DNA Repeats, Russ. J. Genet., 1998, vol. 34, no. 3, pp. 343–345.

    CAS  Google Scholar 

  12. Ogarkova, O.A., Tomilova, N.B., Tomilov, A.A, and Tarasov, V.A., Collection of Arabidopsis thaliana Morphological Insertion Mutants, Russ. J. Genet., 2001, vol. 37, no. 8, pp. 899–904.

    Article  CAS  Google Scholar 

  13. Tomilova, N.B., Tomilov, A.A., Ogarkova, O.A., et al., Hormone-Dependent Insertional Mutants of Arabodopsis thaliana with Reduced Viability and Fertility, Russ. J. Genet., 2001, vol. 37, no. 9, pp. 1048–1053.

    Article  CAS  Google Scholar 

  14. Leehan, R. and Feldman, K.A., T-DNA Mutagenesis in Arabidopsis: Going Back and Forth, Trends Genet., 1997, vol. 13, no. 4, pp. 152–156.

    Article  Google Scholar 

  15. Kuromori, T., Wada, T., Kamyia, A., et al., A Trial of Phenome Analysis Using 4000 Ds-Insertional Mutants in Gene-Coding Regions of Arabidopsis, Plant J., 2006, vol. 47, pp. 640–651.

    Article  PubMed  CAS  Google Scholar 

  16. Khadeeva, N.V., Kochieva, E.Z., Cherednichenko, M.Yu., et al., Use of Buckwheat Seed Protease Inhibitor Gene for Improvement of Tobacco and Potato Plant Resistance to Biotic Stress, Biokhimiya (Moscow), 2009, vol. 74, no. 3, pp. 260–267.

    Article  CAS  Google Scholar 

  17. Gamborg, O.L., Miller, R.A., and Ojima, K., Nutrient Requirements of Suspension Cultures of Soybean Root Cells, Exp. Cell Res., 1968, vol. 50, no. 2, pp. 150–155.

    Google Scholar 

  18. Pausheva, Z.P., Praktikum po tsitologii rastenii (Manual in Plant Cytology), Moscow: Kolos, 1974.

    Google Scholar 

  19. Khadeeva, N.V. and Yakovleva, E.Yu., Inheritance of Marker and Target Genes in Seed and Vegetative Progenies of Transgenic Tobacco Plants Carrying the Buckwheat Serine Protease Inhibitor Gene, Russ. J. Genet., 2010, vol. 46, no. 1, pp. 50–56.

    Article  CAS  Google Scholar 

  20. Deineko, E.V., Novoselya, T.V., Zagorskaya, A.A., et al., Expression Instability of the Marker nptII Gene in Transgenic Tobacco Plants, Fiziol. Rastenii, 2000, vol. 47, no. 3, pp. 446–452.

    Google Scholar 

  21. Raldugina, G.N., Gorelova, S.V., and Kozhemyakin, A.V., Stability and Inheritance of Transgenes in Rapeseed Plants, Fiziol. Rastenii, 2000, vol. 47, no. 3, pp. 437–445.

    Google Scholar 

  22. Marenkova (Novoselya), T.V., and Deineko, E.V., A Change in the Stability of Marker nptII and uidA Gene Expression in Transgenic Tobacco Plants, Russ. J. Genet., 2006, vol. 42, no. 5, pp. 518–525.

    Article  CAS  Google Scholar 

  23. Kamath, R.S., Frazer, A.G., Dong, V., et al., Systematic Functional Analysis of the Caenorhabditis elegans Genome Using RNAi, Nature, 2003, vol. 401, pp. 231–237.

    Article  Google Scholar 

  24. Girijashankar, V., Sharma, H.C., Sharma Kiran, K., et al., Development of Transgenic Sorghum for Insect Resistance against the Spotted Stem Borer (Chilo partellus), Pl. Cell Rep., 2005, vol. 24, pp. 513–522.

    Article  CAS  Google Scholar 

  25. Cherednichenko, M.Yu., Transformation of Potato and Tobacco by Means of Defensine Genes and Protease Inhibitor BWI-1a, Cand. Sci. (Biol.) Dissertation, Moscow, 2004, p. 56.

  26. Lebedeva, O.V., Sklyarova, O.A., and Ezhova, T.A., The Roles of the NANA and LEPIDA Genes in Regulating the Stem Growth in Arabidopsis thaliana, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 764–771.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Khadeeva.

Additional information

Original Russian Text © N.V. Khadeeva, E.Yu. Yakovleva, M.N. Polyakova, Ya.E. Dunaevsky, M.A. Belozersky, 2012, published in Genetika, 2012, Vol. 48, No. 2, pp. 194–203.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadeeva, N.V., Yakovleva, E.Y., Dunaevsky, Y.E. et al. Comparative analysis of tobacco and Arabidopsis insertional mutants, transformed with equal vector constructions. Russ J Genet 48, 170–178 (2012). https://doi.org/10.1134/S1022795412010097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795412010097

Keywords

Navigation