Skip to main content
Log in

Expression of the apomictic potential and selection for apomixis in sorghum line AS-1a

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Expression of elements of apomixis was studied for ten seasons in sorghum line AS-1a and its backcross hybrids in the 9E and A3 sterile cytoplasms. Cytoembryological analysis revealed aposporous embryo sacks (apo-ESs), their initial cells, and, rare, parthenogeneic proembryos in ovules of line AS-1a and its BC2 and BC3 hybrids on the 9E cytoplasm. The A3 sterile cytoplasm suppressed the development of parthenogenetic proembryos, but did not affect the apo-ES formation. The frequency of apomictic elements increased in seasons with high daily temperatures and total precipitation deficiency in the period of ovule and megagametophyte development (r = −0.805, p <.01). Selection was used to isolate the families where the frequency of ovules with apo-ESs was 28% and the frequency of parthenogenetic proembryos was 14%. Emasculated panicles of line AS-1a were pollinated with pollen of line Volzhskoe-4v, which carried the Rs marker dominant gene, responsible for the anthocyan color of coleoptyles and leaves in seedlings. Plants of the maternal type were found in the progenies of these crosses at a frequency of 1.4–28.1%. The genetic structure of the endosperm in grains with maternal-type seedlings was inferred from the electrophoretic patterns of storage proteins (kafirins). The kafirin spectra of grains producing maternal-type seedlings was similar to the spectrum of line AS-1a and differed from the spectra of grains producing hybrid seedlings, indicating that the endosperm developed autonomously when apomictic grains formed in line AS-1a. The results showed that lines with facultative apomixis can be constructed in functionally diploid plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrov, D.F., Belousova, N.I., and Fokina, E.S., About a Transfer to Maize an Ability for Regular Apomictic Reproduction, Problemy apomiksisa i otdalennoi gibridizatsii (Problems of Apomixis and Distant Hybridization), Novosibirsk: Nauka, 1987, pp. 29–41.

    Google Scholar 

  2. Savidan Y. Transfer of Apomixes through the Wide Crosses, The Flowering of Apomixes: From Mechanisms to Genetic Engineering, Savidan, Y., Carman, J.G., and Dresselhaus, T., Eds., Mexico: SYMMIT/EU/IRD, 2001, pp. 153–167.

    Google Scholar 

  3. Tyrnov, V.S., Haploidy and Apomixis, in Reproduktivnaya biologiya, genetika, selektsiya (Reproductive Biology, Genetics, Breeding), Saratov: Saratov Gos. Univ., 2002, pp. 32–46.

    Google Scholar 

  4. Prackelt, U., Scott, R., Induction of Apomixis in Sexual Plants by Mutagenesis, The Flowering of Apomixes: From Mechanisms to Genetic Engineering, Savidan, Y., Carman, J.G., and Dresselhaus, T., Eds., Mexico: SYMMIT/EU/IRD, 2001, pp. 212–228.

    Google Scholar 

  5. Zhuzhzhalova, T.P., Bogomolov, M.A., Fedulova, T.P., and Fomenko, N.R., Directional Apomixis Induction in Sugar Beet, Sakharnaya Svekla, 2003, vol. 10, pp. 25–26.

    Google Scholar 

  6. Marimuthu, M.P.A., Jolivet, S., Ravi, M., et al., Synthetic Clonal Reproduction through Seeds, Science, 2011, vol. 331, p. 876.

    Article  PubMed  CAS  Google Scholar 

  7. Bicknell, R.A. and Koltunow, A.M., Understanding Apomixis: Recent Advances and Remaining Conundrums, Plant Cell, 2004, vol. 16, pp. 228–245.

    Article  Google Scholar 

  8. Kohler, C. and Makarevich, G., Epigenetic Mechanisms Governing Seed Development in Plants, EMBO Rep., 2006, vol. 7, no. 12, pp. 1223–1227.

    Article  PubMed  Google Scholar 

  9. Rodrigues, J.C.M., Luo, M., Berger, F., and Koltunow, A.M.G., Polycomb Group Gene Function in Sexual and Asexual Seed Development in Angiosperms, Sex. Plant Reprod., 2010, vol. 23, pp. 123–133.

    Article  PubMed  CAS  Google Scholar 

  10. Koltunow, A.M. and Grossniklaus, U., Apomixis: A Developmental Perspective, Annu. Rev. Plant Biol., 2003, vol. 54, pp. 547–574.

    Article  PubMed  CAS  Google Scholar 

  11. Kashin, A.S., Gametofitnyi apomiksis kak neustoichivaya sistema semennogo razmnozheniya u tsvetkovykh (Gametophytic Apomixis as an Unstable Seed Reproductive System in Flowering Plants), Saratov: Nauchnaya kniga, 2006.

    Google Scholar 

  12. Hanna, W.W., Schertz, K.F., and Bashaw, E.C., Apospory in Sorghum bicolor (L.) Moench., Science, 1970, vol. 170, no. 3955, pp. 338–339.

    Article  PubMed  CAS  Google Scholar 

  13. Rao, N.G.P., Narayana, L.L., and Reddy, V.R., Apomixis and Its Utilization in Grain Sorghum, I. Embryology of Two Apomictic Parents, Caryologia, 1978, vol. 31, no. 4, pp. 427–433.

    Google Scholar 

  14. Murty, U.R., Appraisal on the Present Status of Research on Apomixis in Sorghum, Curr. Sci., 1993, vol. 64, no. 5, pp. 315–318.

    Google Scholar 

  15. Wu, S.-B., Shang, Y.-J., Han, X.-M., et al., Embryological Study on Apomixis in a Sorghum Line SSA-1, Acta Bot. Sinica, 1994, vol. 36, no. 11, pp. 833–837.

    Google Scholar 

  16. Zhang, F., Meng, C., Yan, X., et al., Studies on the Apomixis Property and Genetic Behavior of the Sorghum Apomixis Line SSA-1, Acta Agron. Sinica, 1997, vol. 23, pp. 89–94.

    Google Scholar 

  17. Ping, J.-A., Zhang, F.-Y., Cui, G.-M., et al., A Study of the Properties of Autonomous Seed Setting and Embryology in Sorghum Apomictic Line 2083, Acta Agron. Sinica, 2004, vol. 30, no. 7, pp. 714–718.

    Google Scholar 

  18. Carman, J., Jamison, M., Elliott, E., et al., Apospory Appears to Accelerate Onset of Meiosis and Sexual Embryo Sac Formation in Sorghum Ovules, BMC Plant Biol., 2011, vol. 11, no. 9, http://www.biomedcentral.com/1471-2229/11/9).

  19. Elkonin, L.A., Enaleeva, N.K., Belyaeva, E.V., et al., Partially Fertile Line with Apospory Obtained from Tissue Culture of Male Sterile Plant of Sorghum, Ann. Botany, 1995, vol. 76, pp. 359–364.

    Article  Google Scholar 

  20. Elkonin, L.A. and Belyaeva, E.V., Use of Male Sterility for Isolating Apomictic Sorghum Lines, Int. Sorghum Millet Newslett., 2002, vol. 43, pp. 22–23.

    Google Scholar 

  21. Torres-Cardona, S., Sotomayor-Rios, A., Quiles Belen, A., and Schertz, K.F., Fertility Restoration to A1, A2, and A3 Cytoplasm Systems of Converted Sorghum Lines, Texas Agr. Exp. Station, 1990, MP-1721, pp. 1–11.

    Google Scholar 

  22. Elkonin, L.A., Kozhemyakin, V.V., and Ishin, A.G., Nuclear-Cytoplasmic Interactions in Restoration of Male Fertility in the ‘9E’ and A4 CMS-Inducing Cytoplasms of Sorghum, Theor. Appl. Genet., 1998, vol. 97, pp. 626–632.

    Article  Google Scholar 

  23. Zaitsev, G.N., Matematicheskaya statistika v eksperimental’noi botanike (Mathematical Statistics in Experimental Botany), Moscow: Nauka, 1984.

    Google Scholar 

  24. Gerashchenkov, G.A. and Rozhnova, N.A., Mobile Genetic Elements in Plant Sex Evolution, Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1271–1281.

    Article  CAS  Google Scholar 

  25. Chinnusamy, V. and Zhu, J.-K., Epigenetic Regulation of Stress Responses in Plants, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 133–139.

    Article  PubMed  CAS  Google Scholar 

  26. Iantcheva, A., Chabaud, M., Cosson, V., et al., Osmotic Shock Improves Tnt1 Transposition Frequency in Medicago truncatula cv. Jemalong during in vitro Regeneration, Plant Cell Rep., 2009, vol. 28, pp. 1563–1572.

    Article  PubMed  CAS  Google Scholar 

  27. Tan, M.-P., Analysis of DNA Methylation of Maize in Response to Osmotic and Salt Stress Based on Methylation-Sensitive Amplified Polymorphism, Plant Physiol. Biochem., 2010, vol. 48, pp. 21–26.

    Article  PubMed  CAS  Google Scholar 

  28. Matzk, F., Meyer, H.-M., Baumlein, H., et al., A Novel Approach to the Analysis of the Initiation of Embryo Development in Gramineae, Sex. Plant Reprod., 1995, vol. 8, pp. 266–272.

    Article  Google Scholar 

  29. Zhou, K.-D., Wang, X.-D., Luo, M., et al., Initial Study on Sinchuan Apomictic Rice (SAR 1), Sci. China, Ser. B, 1993, vol. 36, no. 4, pp. 420–429.

    Google Scholar 

  30. Spielman, M., Vinkenoog, R., and Scott, R.J., Genetic Mechanisms of Apomixis, Phil. Trans. R. Soc. London, Ser. B, 2003, vol. 358, pp. 1095–1103.

    Article  CAS  Google Scholar 

  31. Sokolov, V.A., Imprinting in Plants, Russ. J. Genet., 2006, vol. 42, no. 9, pp. 1043–1052.

    Article  CAS  Google Scholar 

  32. Huh, J.X., Bauer, M.J., Hsieh, T.-F., and Fischer, R.L., Endosperm Gene Imprinting and Seed Development, Curr. Opin. Genet. Dev., 2007, vol. 17, no. 6, pp. 480–485.

    Article  PubMed  CAS  Google Scholar 

  33. Vinkenoog, R. and Scott, R.J., Autonomous Endosperm Development in Flowering Plants: How to Overcome the Imprinting Problem?, Sex. Plant Reprod., 2001, vol. 14, pp. 189–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Elkonin.

Additional information

Original Russian Text © L.A. Elkonin, E.V. Belyaeva, I.Yu. Fadeeva, 2012, published in Genetika, 2012, Vol. 48, No. 1, pp. 40–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkonin, L.A., Belyaeva, E.V. & Fadeeva, I.Y. Expression of the apomictic potential and selection for apomixis in sorghum line AS-1a. Russ J Genet 48, 32–40 (2012). https://doi.org/10.1134/S102279541111007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541111007X

Keywords

Navigation