Skip to main content
Log in

Genetic variability and differentiation of Caragana microphylla populations as revealed by RAPD markers

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genetic variability in random amplified polymorphic DNA (RAPD) was studied in 90 individuals of Caragana microphylla, an outcrossing perennial shrub species, from five natural populations sampled in Inner Mongolia steppe of China on a small scale. Nineteen selected primers were used to amplify DNA samples, and totally 225 bands were detected. The percentage of polymorphic bands within populations ranged form 58.22% to 63.56%, with an average of 60% at the population level and 71.11% at the species level, indicating relatively high genetic variations in C. microphylla species. Shannon’s information index (l) and Nei’s gene diversity (h) showed the similar trend with each other. According to the analysis of Nei’s gene diversity, the percentage of genetic variation among populations was 7.13%, indicating a low level of genetic differentiation among populations. There existed a strong gene flow (N m = 3.26) among populations. Although AMOVA analysis also revealed most variation was within populations (ΦST = 4.1%), a significant proportion was observed among populations (P < 0.001) in the present study, suggesting genetic differentiation occurred among populations at a certain extent. Based on Mantel’s tests and the results of previous studies, the genetic structure pattern of C. microphylla accorded with the isolation-by-distance model on a very large scale, however, on a small scale, the significant genetic differentiation among populations might be enhanced by the micro-environmental divergence among the sampling sites, rather than by geographic factors. Analysis of the genetic variations of C. microphylla populations provided useful information for the adaptive strategy of Caragana species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, X.Y., Zhang, R.D., Xue, X.Z., and Zhao, M., Determination of Evapotranspiration in the Desert Area Using Lysimeters, Commun. Soil. Sci. Plan., 1998, vol. 29, pp. 1–13.

    Article  CAS  Google Scholar 

  2. Cao, Y.C., Jiang, D.M., Alamsa, et al., Ecological Process of Vegetation Restoration in Caragana micropylla Sand-Fixing Area, Chin. J. Appl. Ecol., 2000, vol. 11, pp. 349–354.

    CAS  Google Scholar 

  3. Ren, J., Tao, L., and Liu, X.M., Effect of Different Microhabitats and Stand Age on Survival of Introduced Sand-Fixing Plants, J. Arid. Environ., 2002, vol. 51, pp. 413–421.

    Article  Google Scholar 

  4. Liu, L.D., Zhang, L., and Gao, Y.B., Caragana microphylla, Chin. Bull. Bot., 2004, vol. 39, pp. 21–22.

    Google Scholar 

  5. Xiong, X.G., Han, X.G., Bai, Y.F., and Pan, Q.M., Increased Distribution of Caragana micropylla in Rangelands and Its Cause and Consequences in Xilin River Basin, Acta. Pratacul. Turae. Sin., 2003, vol. 12, pp. 57–62.

    Google Scholar 

  6. Lu, J.W., Wang, Z., Zhang, X.Q., et al., Study on Genetic Diversity of Natural Populations in Caragana microphylla, Hubei. Agric. Sci., 2008, vol. 47, pp. 328–331.

    Google Scholar 

  7. Zhao, Y.Z., The Distribution Pattern and Ecological Adaptation of Caragana microphylla, C. davazamcii and C. korshinskii, Acta. Ecol. Sin., 2005, vol. 25, pp. 3411–3414.

    Google Scholar 

  8. Hou, X., Liu, J.E., and Zhao, Y.Z., Molecular Phylogeny of Caragana (Fabaceae) in China, J. Syst. Evol., 2008, vol. 46, pp. 600–607.

    Google Scholar 

  9. Li, Y.F., Jiang, S., Gu, S., et al., Micro-Morphology of Leaf Epidermis of Caragana in Inner Mongolia, Bull. Bot. Res., 2008, vol. 28, pp. 668–678.

    Google Scholar 

  10. Ma, C.C., Gao, Y.B., Guo, H.Y., and Wang, J.L., Interspecific Transition between Caragana microphylla, C. dava-zamcii and C. korshinskii along Geographic Gradient: Characteristics of Photosynthesis and Water Metabolism, Acta Bot. Sin., 2003, vol. 45, pp. 1228–1237.

    Google Scholar 

  11. Ma, C.C., Gao, Y.B., Guo, H.Y., and Wang, J.L., Photosynthesis, Transpiration, and Water Use Efficiency of Caragana microphylla, C. intermedia and C. korshinskii, Photosynthetica, 2004, vol. 42, pp. 65–70.

    Article  CAS  Google Scholar 

  12. Wei, W., Wang, H.X., Hu, Z.A., et al., Primary Studies on Molecular Ecology of Caragana spp. Populations Distributed over Maowusu Sandy Grassland: From RAPD Data, Acta Ecol. Sin., 1999, vol. 19, pp. 16–22.

    Google Scholar 

  13. Yang, M.B., Yang, J., Yang, J.Y., et al., Genetic Structure of Caragana davazamcii Sanca along a Precipitation Gradient in Erdos Plateau, Acta Ecol. Sin., 2006, vol. 26, pp. 4027–4032.

    CAS  Google Scholar 

  14. Wang, Z., Gao, H.W., Han, J.G., and Wu, Y.Q., Allozyme Diversity and Population Structure of Caragana korshinskii Kom. in China, Genet. Resour. Crop Evol., 2006, vol. 53, pp. 1689–1697.

    Article  CAS  Google Scholar 

  15. Wang, Z., Gao, H.W., Wu, Y.Q., and Han, J.G., Genetic Diversity and Population Structure of Caragana korshinskii Revealed by AFLP, Crop. Sci., 2007, vol. 47, pp. 1737–1743.

    Article  CAS  Google Scholar 

  16. Guo, H.Y., Gao, Y.B., Ma, C.C., et al., Genetic Differentiation of Caragana microphylla in Inner Mongolia Steppe, Acta. Bot. Boreali-Occidentalia Sin., 2008, vol. 28, pp. 0072–0077.

    Google Scholar 

  17. Chrisanfova, G.G., Charchevnikov, D.A., Popov, I.O., et al., Genetic Variability and Differentiation of Three Russian Populations of Potato Cyst Nematode Globodera rostochiensis as Revealed by Nuclear Markers, Russ. J. Genet., 2008, vol. 44, no. 5, pp. 533–538.

    Article  CAS  Google Scholar 

  18. Levina, E.A., Adrianova, I.Y., Reunova, G.D., and Zhuravlev, Y.N., Genetic Variability and Differentiation in the Larch Populations within the Range of Larix olgensis A. Henry in Primorye, Russ. J. Genet., 2008, vol. 44, no. 3, pp. 320–325.

    Article  CAS  Google Scholar 

  19. Kravchenko, A.N., Larionova, A.Y., and Milyutin, L.I., Genetic Polymorphism of Siberian Spruce (Picea obovata Ledeb.) in Middle Siberia, Russ. J. Genet., 2008, vol. 44, no. 1, pp. 35–43.

    Article  CAS  Google Scholar 

  20. Kholina, A.B., Koren, O.G., and Zhuravlev, Y.N., Genetic Structure and Differentiation of Populations of the Tetraploid Species Oxytropis chankaensis (Fabaceae), Russ. J. Genet., 2009, vol. 45, no. 1, pp. 70–80.

    Article  CAS  Google Scholar 

  21. Nybom, H., Comparison of Different Nuclear DNA Markers for Estimating Intraspecific Genetic Diversity in Plants, Mol. Ecol., 2004, vol. 13, pp. 1143–1155.

    Article  PubMed  CAS  Google Scholar 

  22. Gunderina, L.I., Kiknadze, I.I., and Istomina, A.G., and Butler, M., Geographic Differentiation of Genomic DNA of Chironomus plumosus (Diptera, Chironomidae) in Natural Holarctic Populations, Russ. J. Genet., 2009, vol. 45, no. 1, pp. 54–62.

    Article  CAS  Google Scholar 

  23. Plant Molecular Biology: A Laboratory Manual, Clark, M.S. Ed., Berlin: Springer-Verlag, 1997.

    Google Scholar 

  24. Williams, J.G.K., Kubelik, A.R., Livak, K.J., et al., DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers, Nucleic Acids Res., 1990, vol. 18, pp. 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  25. Yeh, F.C., Yang, R.C., and Boyle, T., POPGENE. Microsoft Windows-Based Freeware for Population Genetic Analysis: Release 1.31, Edmonton: Univ. Alberta, 1999.

    Google Scholar 

  26. Rohlf, F.J., NTSYS-Pc: Numerical Taxonomy and Multivariate Analysis System, Version 1.80, New York: Exeter Software, 1994.

    Google Scholar 

  27. Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: An Integrated Software Package for Population Genetics Data Analysis, Evol. Bioinform. Online, 2005, vol. 1, pp. 47–50.

    CAS  Google Scholar 

  28. Hamrick, J.L. and Godt, M.J.W., Effects of Life History Traits on Genetic Diversity in Plant Species, Phil. Trans. R. Soc. London, Ser. B, 1996, vol. 351, pp. 1291–1298.

    Article  Google Scholar 

  29. Nybom, H. and Bartish, L.V., Effects of Life History Traits and Sampling Strategies on Genetic Diversity Estimates Obtained with RAPD Markers in Plants, Perspect. Plant. Ecol. Evol. Syst., 2000, vol. 3/2, pp. 93–114.

    Article  Google Scholar 

  30. Zeng, J. and Bai, J.Y., Some Hot Issues on Phenotypic Variation of Natural Plant Populations, Guangxi Forestry Sci., 2007, vol. 36, pp. 65–70.

    Google Scholar 

  31. Chen, X.H., Gao, Y.B., Zhao, T.T., et al., Morphological Variations of Caragana microphylla Populations in the Xilingol Steppe and Their Correlations with Environmental Factors, Acta Ecol. Sin., 2010, vol. 30, pp. 50–55.

    Article  CAS  Google Scholar 

  32. Wright, S., Evolution in Mendelian populations, Genetics, 1931, vol. 16, pp. 97–159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X.H., Gao, Y.B. Genetic variability and differentiation of Caragana microphylla populations as revealed by RAPD markers. Russ J Genet 47, 1058–1065 (2011). https://doi.org/10.1134/S1022795411090043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795411090043

Keywords

Navigation