Skip to main content
Log in

Mapping of quantitative trait loci (QTL) associated with activity of disulfide reductase and lipoxygenase in grain of bread wheat Triticum aestivum L.

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Activity of two enzymes of thiol-disulfide cell metabolism, lipoxygenase (LOX, EC 1.13.11.12) and disulfide-reductase (TPDO, EC 1.8.4.2) was studied in recombinant inbred lines of bread wheat ITMI. Their activity in the caryopsis may be connected with the gluten quality, one of the most important traits significant for breeding. The activity of lipoxygenase under favorable and droughty environmental conditions was shown to be associated with the quantitative trait locus (QTL) located on chromosome 4BS near the structural gene of a subunit of this enzyme. However, no QTL common to this enzyme and any characteristic of gluten quality have been found. Four loci responsible for the activity of disulfide reductase were identified on chromosomes 4A, 5D, 6A, and 7D. Previously, indicators of grain and flour properties, such as elasticity, flour strenght, and grain hardiness were mapped at the same loci. This indicates that the given enzyme participates in the formation of the protein complex upon maturation of wheat grain. The detected QTL can be involved in further genetic studies designed to establish the regularities of gluten formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., et al., An Introduction to Markers, Quantitative Trait Loci (QTL) Mapping and Marker-Assisted Selection for Crop Improvement: The Basis Concepts, Euphytica, 2005, vol. 142, nos. 1–2, pp. 169–196.

    Article  CAS  Google Scholar 

  2. Carollo, V.L., Matthews, D.E., Lazo, G.R., et al., Wheat Maps on GrainGenes: Past, Present and Coming Attractions, Proc. 10th Int. Wheat Genet. Symp., Paestrum, 2003, vol. 1, pp. 225–228.

    Google Scholar 

  3. Nelson, J.C., Sorrells, M.E., Van Deynze, A.E., et al., Molecular Mapping of Wheat: Major Genes and Rearrangements in Homoeologous Groups 4, 5, and 7, Genetics, 1995, vol. 141, pp. 721–731.

    PubMed  CAS  Google Scholar 

  4. Nelson, J.C., Autrique, J.E., Fuentes-Davila, G., et al., Chromosomal Location of Genes for Resistance to Karnal Bunt in Wheat, Crop Sci., 1998, vol. 38, pp. 231–236.

    CAS  Google Scholar 

  5. Singh, R.P., Nelson, J.C., and Sorrells, M.E., Mapping Yr28 and Other Genes for Resistance to Stripe Rust in Wheat, Crop Sci., 2000, vol. 40, pp. 1148–1155.

    CAS  Google Scholar 

  6. Borner, A., Schumann, E., Fürste, A., et al., Mapping of Quantitative Trait Loci for Agronomic Important Characters in Hexaploid Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2002, vol. 105, pp. 921–936.

    Article  PubMed  Google Scholar 

  7. Nelson, J.C., Andreescu, C., Breseghello, F., et al., Quantitative Trait Locus Analysis of Wheat Quality Traits, Euphytica, 2006, vol. 149, pp. 145–159.

    Article  CAS  Google Scholar 

  8. Prioul, J.-L., Pelleschi, S., Séne, M., et al., From QTLs for Enzyme Activity to Candidate Genes in Maize, J. Exp. Botany, 1999, vol. 50, no. 337, pp. 1281–1288.

    Article  CAS  Google Scholar 

  9. Bloksma, A.H., Thiol and Disulfide Groups in Dough Rheology, Cereal. Chem., 1975, vol. 52, pp. 170–183.

    CAS  Google Scholar 

  10. Dobraszczyk, B.J. and Morgenstern, M.P., Reology and the Bread-Making Process, J. Cereal Sci., 2003, vol. 38, pp. 229–245.

    Article  CAS  Google Scholar 

  11. Every, D., Simmons, L.D., and Ross, M.P., Distribution of Redox Enzymes in Millstreams and Relationships to Chemical and Baking Properties of Flour, Cereal Chem., 2006, vol. 83, pp. 62–68.

    Article  CAS  Google Scholar 

  12. Lemelin, E., Branlard, G., Salvo, L., et al., Bread-Making Stability of Wheat Flours: Relation between Mixing Properties and Molecular Weight Distribution of Polymeric Glutenins, J. Cereal Sci., 2005, vol. 42, pp. 317–326.

    Article  CAS  Google Scholar 

  13. Shiiba, K., Negishi, Y., Okada, K., et al., Purification and Characterization of Lipoxygenase Isozymes from Wheat Germ, Cereal Chem., 1991, vol. 68, pp. 115–122.

    CAS  Google Scholar 

  14. Permyakova, M.D, Trufanov, V.A, Permyakov, A.V, et al., The Relationship between Specific Lipoxygenase Activity and Technological Characteristics of Gluten in Recombinant Inbred Lines of the ITMI Mapping Population, in EWAC Newslett. Proc. 13th Int. EWAC Conference, Börner, A., Pankova, K., and Snape, J., Eds., Prague, 2006, pp. 113–116.

  15. Hart, G.E. and Langstone, P.J., Chromosome Location and Evolution of Isozyme Structural Genes in Hexaploid Wheat, Heredity, 1977, vol. 39, pp. 263–277.

    Article  CAS  Google Scholar 

  16. Osipova, S.V., Permyakov, A.V., Mitrofanova, T.N., et al., Characteristics Thiol-Proteindisulfide Oxidoreductase from Wheat Tritisum aestivum L. Grain, Biochemistry (Moscow), 2005, vol. 70, pp. 1130–1136.

    Article  CAS  Google Scholar 

  17. Osipova, S.V., Permyakov, A.V., Mitrofanova, T.N., et al., The Role of Disulfide-Reductase in Determination of Technological Properties of Grain in Tritisum aestivum L., in EWAC Newslett. Proc. 13th Int. EWAC Conference, Börner, A., Pankova, K., and Snape, J., Eds., Prague, 2006, pp. 108–110.

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 93, pp. 265–275.

    Google Scholar 

  19. Minoda, Y., Kurane, R., and Yanada, K., Thiol-Disulfide Transhydrogenase from Bakers Yeast and a New Method for the Direct Assay of an Enzyme-Catalyzed Thiol-Disulfide Interchange Activity, Agric. Biol. Chem., 1973, vol. 37, pp. 2511–2516.

    CAS  Google Scholar 

  20. Zimmerman, D.C. and Vick, B.A., Hydroperoxide Isomerase: A New Enzyme of Lipid Metabolism, Plant Physiol., 1970, vol. 46, no. 3, pp. 445–453.

    Article  PubMed  CAS  Google Scholar 

  21. Barone, R., Briante, R., D’Auria, S., et al., Purification and Characterization of the Lipoxygenase Enzyme from Durum Wheat Semolina, J. Agric. Food Chem., 1999, vol. 47, pp. 1924–1931.

    Article  PubMed  CAS  Google Scholar 

  22. Pshenichnikova, T.A., Ermakova, M.F., Chistyakova, A.K., et al., Molecular Mapping of Loci Associated with Quality of Bread Wheat Grain, S.-kh. Biol., 2006, no. 5, pp. 41–47.

  23. Pshenichnikova, T.A., Ermakova, M.F., Chistyakova, A.K., et al., Quantitative Trait Loci (QTL) Mapping Associated with Quality of Bread Wheat Grain, Manifested in Different Environment, Russ. J. Genet., 2008, vol. 44, no. 1, pp. 90–101.

    Article  CAS  Google Scholar 

  24. Nelson, J.C., QGENE: Software for Mapping-Based Genomic Analysis and Breeding, Mol. Breed., 1997, vol. 3, pp. 239–245.

    Article  CAS  Google Scholar 

  25. Lander, E.S. and Bootstein, D., Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps, Genetics, 1989, vol. 121, no. 1, pp. 185–199.

    PubMed  CAS  Google Scholar 

  26. Hessler, T.G., Thompson, M.J., Benscher, D., et al., Association of Lipoxygenase Locus, Lpx-B1, with Variation in Lipoxygenase Activity in Durum Wheat Seeds, Crop Sci., 2002, vol. 42, pp. 1695–1700.

    CAS  Google Scholar 

  27. Permykova, M.D, Trufanov, V.A, Permyakov, A.V, et al., Lipoxygenase Activity in the Intervarietal Substitution Lines on Chromosomes of 4 and 5 Homoeological Groups in EWAC Key Substitution Sets, in EWAC Newslett. Proc. 13th Int. EWAC Conf., Borner, A., Pankova, K., and Snape, J., Eds., Prague, 2006, pp. 111–113.

  28. Elouafu, E., Nachit, M.M., and Martin, L.M., Identification of a Microsatellite on Chromosome 7B Showing a Strong Linkage with Yellow Pigment in Durum Wheat (Triticum turgidum L. var. durum), Hereditas, 2001, vol. 135, pp. 255–261.

    Article  Google Scholar 

  29. Hoseney, R.C., Rao, H., Faubion, J., and Sighu, J.S., Mixograph Studies: IV. The Mechanism by Which Lipoxygenase Increases Mixing Tolerance, Cereal Chem., 1980, vol. 57, pp. 163–166.

    CAS  Google Scholar 

  30. Faubion, J.M. and Hoseney, R.C., Lipoxygenase: Its Biochemistry and Role in Breadmaking, Cereal Chem., 1981, vol. 58, pp. 175–180.

    CAS  Google Scholar 

  31. Pastory, G.M. and Foyer, C.H., Common Components, Networks, and Pathways of Cross-Tolerance to Stress: The Central Role of “Redox” and Abscisic Acid-Mediated Controls, Plant Physiol., 2002, vol. 129, pp. 460–468.

    Article  CAS  Google Scholar 

  32. Maccarrone, M., Veldink, G.A., Finazzi, Aghro, A., et al., Modulation of Soybean Lipoxygenase Expression and Membrane Oxidation by Water Deficit, FEBS Lett., 1995, vol. 371, pp. 223–226.

    Article  PubMed  CAS  Google Scholar 

  33. Trufanov, V.A., Permyakova, M.D, Pshenichnikova, T.A., et al., Effect of Intervarietal Chromosome Substitution in Bread Wheat Triticum Aestivum L. on the Lipoxygenase Activity and Its Relation with Technological Characteristics of Flour, Prikl. Mikrobiol. Biokhim., 2007, vol. 43, pp. 102–103.

    CAS  Google Scholar 

  34. McIntosh, R.A., Hart, G.E., Devos, K.M., et al., Catalogue of Gene Symbols for Wheat, Proc. 9th Int. Wheat Genet. Symp., Saskatchewan, 1998, vol. 5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Pshenichnikova.

Additional information

Original Russian Text © T.A. Pshenichnikova, S.V. Osipova, M.D. Permyakova, T.N. Mitrofanova, V.A. Trufanov, U. Lohwasser, M. Röderc, A. Börner, 2008, published in Genetika, 2008, Vol. 44, No. 5, pp. 654–662.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pshenichnikova, T.A., Osipova, S.V., Permyakova, M.D. et al. Mapping of quantitative trait loci (QTL) associated with activity of disulfide reductase and lipoxygenase in grain of bread wheat Triticum aestivum L.. Russ J Genet 44, 567–574 (2008). https://doi.org/10.1134/S1022795408050098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795408050098

Keywords

Navigation