Skip to main content
Log in

Viable nonsense mutants for the SUP45 gene in the yeast Saccharomyces cerevisiae are lethal at increased temperature

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Nonlethal nonsense mutations obtained earlier in the essential gene SUP45 encoding the translation termination factor eRF1 in the yeast Saccharomyces cerevisiae were further characterized. Strains carrying these mutations retain the viability, since the full-length eRF1 protein is present in these strains, although in decreased amounts as compared to wild-type cells, together with a trucated eRF1. All nonsense mutations are likely to be located in a weak termination context, because a change in the stop codon UGAA (in the case of mutation sup45-107) to UAGA (sup45-107.2) led to the alteration of the local context from a weak to strong and to the lethality of the strain carrying sup45-107.2. All nonsense mutations studied are characterized by thermosensitivity expressed as cell mortality after cultivation at 37°C. When grown under nonpermissive conditions (37°C), cells of nonsense mutants sup45-104, sup45-105, and sup45-107 display a decrease in the amount of the truncated eRF1 protein without reduction in the amount of the full-length eRF1 protein. The results of this study suggest that the N-terminal eRF1 fragment is indispensable for cell viability of nonsense mutants due to the involvement in termination of translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kisselev, L., Ehrenberg, M., and Frolova, L., Termination of Translation: Interplay of mRNA, rRNAs and Release Factors?, EMBO J., 2003, vol. 22, pp. 175–182.

    Article  PubMed  CAS  Google Scholar 

  2. Inge-Vechtomov, S., Zhouravleva, G., and Philippe, M., Eukaryotic Release Factors (eRFs) History, Biol. Cell, 2003, vol. 95, pp. 195–209.

    Article  PubMed  CAS  Google Scholar 

  3. Frolova, L., Le Goff, X., Rasmussen, H.H., et al., A Highly Conserved Eukaryotic Protein Family Possessing Properties of Polypeptide Chain Release Factor, Nature, 1994, vol. 372, pp. 701–703.

    Article  PubMed  CAS  Google Scholar 

  4. Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of Translation in Eukaryotes Is Governed by Two Interacting Polypeptide Chain Release Factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065–4072.

    PubMed  CAS  Google Scholar 

  5. Stansfield, I., Jones, K.M., Kushnirov, V.V., et al., The Products of the SUP45 (eRF1) and SUP35 Genes Interact to Mediate Translation Termination in S. cerevisiae, EMBO J., 1995, vol. 14, pp. 4365–4373.

    PubMed  CAS  Google Scholar 

  6. Eurwilaichitr, L., Graves, F.M., Stansfield, I., and Tuite, M.F., The C-Terminus of eRF1 Defines a Functionally Important Domain for Translation Termination in S. cerevisiae, Mol. Microbiol., 1999, vol. 32, pp. 485–496.

    Article  PubMed  CAS  Google Scholar 

  7. Merkulova, T.I., Frolova, L.Y., Lazar, M., et al., C-Terminal Domains of Human Translation Termination Factors eRF1 and eRF3 Mediate Their in Vivo Interaction, FEBS Lett., 1999, vol. 443, pp. 41–47.

    Article  PubMed  CAS  Google Scholar 

  8. Salas-Marco, J. and Bedwell, D.M., GTP Hydrolysis by eRF3 Facilitates Stop Codon Decoding during Eukaryotic Translation Termination, Mol. Cell. Biol., 2004, vol. 24, pp. 7769–7778.

    Article  PubMed  CAS  Google Scholar 

  9. Ito, K., Frolova, L., Seit-Nebi, A., et al., Omnipotent Decoding Potential Resides in Eukaryotic Translation Termination Factor eRF1 of Variant-Code Organisms and Is Modulated by the Interactions of Amino Acid Sequences within Domain 1, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 8494–8499.

    Article  PubMed  CAS  Google Scholar 

  10. Salas-Marco, J., Fan-Minogue, H., Kallmeyer, A.K., et al., Distinct Paths to Stop Codon Reassignment by the Variant-Code Organisms Tetrahymena and Euplotes, Mol. Cell Biol., 2006, vol. 26, pp. 438–447.

    Article  PubMed  CAS  Google Scholar 

  11. Inge-Vechtomov, S.G. and Andrianova, V.M., Recessive Super-Suppressors in Yeast, Genetika (Moscow), 1970, vol. 6, no. 1, pp. 103–116.

    Google Scholar 

  12. Culbertson, M.R., Gaber, R.F., and Cummins, C.M., Frameshift Suppression in S. cerevisiae: V. Isolation and Genetic Properties of Nongroup-Specific Suppressors, Genetics, 1982, vol. 102, pp. 361–378.

    PubMed  CAS  Google Scholar 

  13. Kulikov, V.N., Tikhodeev, O.N., Forafonov, F.S., et al., Partial Inactivation of Translation Termination Factors Causes Suppression of Frameshift Mutations in the Yeast Saccharomyces cerevisiae, Russ. J. Genet., 2001, vol. 37, no. 5, pp. 486–493.

    Article  CAS  Google Scholar 

  14. Mathison, L. and Culbertson, M.R., Suppressible and Nonsuppressible +1 G-C Base Pair Insertions Induced by ICR-170 at the his4 Locus in S. cerevisiae, Mol. Cell. Biol., 1985, vol. 5, pp. 2247–2256.

    PubMed  CAS  Google Scholar 

  15. Kikuchi, Y., Shimatake, H., and Kikuchi, A., A Yeast Gene Required for the G1-to-S Transition Encodes a Protein Containing an A-Kinase Target Site and GTPase Domain, EMBO J., 1988, vol. 7, pp. 1175–1182.

    PubMed  CAS  Google Scholar 

  16. Borkhsenius, A.S. and Inge-Vechtomov, S.G., The Role of SUR35 and SUR45 Genes in Controlling Saccharomycetes Cell Cycle, Dokl. Akad. Nauk, 1997, vol. 353, pp. 553–556.

    PubMed  CAS  Google Scholar 

  17. Tikhomirova, V.L. and Inge-Vechtomov, S.G., Sensitivity of sup35 and sup45 Suppressor Mutants in S. cerevisiae to the Anti-Microtubule Drug Benomyl, Curr. Genet., 1996, vol. 30, pp. 44–49.

    Article  PubMed  CAS  Google Scholar 

  18. Borchsenius, A.S., Tchourikova, A.A., and Inge-Vechtomov, S.G., Recessive Mutations in SUP35 and SUP45 Genes Coding for Translation Release Factors Affect Chromosome Stability in S. cerevisiae, Curr. Genet., 2000, vol. 37, pp. 285–291.

    Article  PubMed  CAS  Google Scholar 

  19. Borkhsenius, A.S., Repnevskaya, M.V., Kurishko, K., and Inge-Vechtomov, S.G., Assosiation between Defects of Karyogamy and Translation Termination in Yeast Saccharomyces cerevisiae, Russ. J. Genet., 2005, vol. 41, no. 2, pp. 122–129.

    Article  CAS  Google Scholar 

  20. Bailleul, P.A., Newnam, G.P., Steenbergen, J.N., and Chernoff, Y.O., Genetic Study of Interactions between the Cytoskeletal Assembly Protein Sla1 and Prion-Forming Domain of the Release Factor Sup35 (eRF3) in S. cerevisiae, Genetics, 1995, vol. 153, pp. 81–94.

    Google Scholar 

  21. Valouev, I.A., Kushnirov, V.V., and Ter Avanesyan, M.D., Yeast Polypeptide Chain Release Factors eRF1 and eRF3 are Involved in Cytoskeleton Organization and Cell Cycle Regulation, Cell Motil. Cytoskeleton, 2002, vol. 52, pp. 161–173.

    Article  PubMed  CAS  Google Scholar 

  22. Inge-Vechtomov, S.G. and Andrianova, V.M., New Type of Supersupressors in Yeasts, in Molekulyarnye mekhanizmy geneticheskikh protsesssov (Molecular Mechanisms of Genetic Processes), Moscow: Nauka, 1972, pp. 189–195.

    Google Scholar 

  23. Ter-Avanesyan, M.D. and Inge-Vechtomov, S.G., Interaction of Dominant and Recessive Suppressors in Yeast Saccharomyces cerevisiae, Genetika (Moscow), 1980, vol. 16, no. 1, pp. 86–94.

    CAS  Google Scholar 

  24. Surguchov, A.P., Fominykch, E.S., Smirnov, V.N., et al., Further Characterization of Recessive Suppression in Yeast: Isolation of the Low-Temperature Sensitive Mutant of S. cerevisiae Defective in the Assembly of 60 S Ribosomal Subunit, Biochim. Biophys. Acta, 1981, vol. 654, pp. 149–155.

    PubMed  CAS  Google Scholar 

  25. Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., et al., Nonsense Mutations in the Essential Gene SUP35 of S. cerevisiae Are Non-Lethal, Mol. Genet. Genomics, 2004, vol. 272, pp. 297–307.

    Article  PubMed  CAS  Google Scholar 

  26. Moskalenko, S.E., Chabelskaya, S.V., Inge-Vechtomov, S.G., et al., Viable Nonsense Mutants for the Essential Gene SUP45 of S. cerevisiae, BMC Mol. Biol., 2003, vol. 4, p. 2.

    Article  PubMed  Google Scholar 

  27. Sikorski, R.S. and Hieter, P., A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in S. cerevisiae, Genetics, 1989, vol. 122, pp. 19–27.

    PubMed  CAS  Google Scholar 

  28. Sherman, F., Fink, G.R., and Hicks, J.B., Laboratory Course Manual for Methods in Yeast Genetics, New York: Cold Spring Harbor Lab., 1986.

    Google Scholar 

  29. Gietz, R.D., Schiestl, R.H., Willems, A.R., and Woods, R.A., Studies on the Transformation of Intact Yeast Cells by the LiAc/SS-DNA/PEG Procedure, Yeast, 1995, vol. 11, pp. 355–360.

    Article  PubMed  CAS  Google Scholar 

  30. Inoue, H., Nojima, H., and Okayama, H., High Efficiency Transformation of E. coli with Plasmids, Gene, 1990, vol. 96, pp. 23–28.

    Article  PubMed  CAS  Google Scholar 

  31. Kaiser, C., Michaelis, S., and Mitchell, A., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab., 1994.

    Google Scholar 

  32. Didichenko, S.A., Ter Avanesyan, M.D., and Smirnov, V.N., Ribosome-Bound EF-1 Alpha-Like Protein of Yeast S. cerevisiae, Eur. J. Biochem., 1991, vol. 198, pp. 705–711.

    Article  PubMed  CAS  Google Scholar 

  33. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  PubMed  CAS  Google Scholar 

  34. Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  35. Tate, W.P. and Mannering, S.A., Three, Four or More: The Translational Stop Signal at Length, Mol. Microbiol., 1996, vol. 21, pp. 213–219.

    Article  PubMed  CAS  Google Scholar 

  36. Kisselev, L.L. and Buckingham, R.H., Translational Termination Comes of Age, Trends Biochem. Sci., 2000, vol. 25, pp. 561–566.

    Article  PubMed  CAS  Google Scholar 

  37. Bertram, G., Innes, S., Minella, O., et al., Endless Possibilities: Translation Termination and Stop Codon Recognition, Microbiology, 2001, vol. 147, pp. 255–269.

    PubMed  CAS  Google Scholar 

  38. Poole, E.S., Brown, C.M., and Tate, W.P., The Identity of the Base Following the Stop Codon Determines the Efficiency of in Vivo Translational Termination in E. coli, EMBO J., 1995, vol. 14, pp. 151–158.

    PubMed  CAS  Google Scholar 

  39. Tate, W.P., Poole, E.S., and Mannering, S.A., Hidden Infidelities of the Translational Stop Signal, Prog. Nucleic Acid Res. Mol. Biol., 1996, vol. 52, pp. 293–335.

    Article  PubMed  CAS  Google Scholar 

  40. Brown, C.M., Stockwell, P.A., Trotman, C.N., and Tate, W.P., The Signal for the Termination of Protein Synthesis in Prokaryotes, Nucleic Acids Res., 1990, vol. 18, pp. 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  41. McCaughan, K.K., Brown, C.M., Dalphin, M.E., et al., Translational Termination Efficiency in Mammals Is Influenced by the Base Following the Stop Codon, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5431–5435.

    Article  PubMed  CAS  Google Scholar 

  42. Ozawa, Y., Hanaoka, S., Saito, R., et al., Comprehensive Sequence Analysis of Trnaslation Termination Sites in Various Eukaryotes, Gene, 2002, vol. 300, pp. 79–87.

    Article  PubMed  CAS  Google Scholar 

  43. Poole, E.S., Brimacombe, R., and Tate, W.P., Decoding the Translational Termination Signal: The Polypeptide Chain Release Factor in E. coli Crosslinks to the Base Following the Stop Codon, RNA, 1997, vol. 3, pp. 974–982.

    PubMed  CAS  Google Scholar 

  44. Poole, E.S., Major, L.L., Mannering, S.A., and Tate, W.P., Translational Termination in Escherichia coli: Three Bases Following the Stop Codon Crosslink to Release Factor 2 and Affect the Decoding Efficiency of UGA-Containing Signals, Nucleic Acids Res., 1998, vol. 26, pp. 954–960.

    Article  PubMed  CAS  Google Scholar 

  45. Mottagui-Tabar, S., Tuite, M.F., and Isaksson, L.A., The Influence of 5′ Codon Context on Translation Termination in S. cerevisiae, Eur. J. Biochem., 1998, vol. 257, pp. 249–254.

    Article  PubMed  CAS  Google Scholar 

  46. Cassan, M. and Rousset, J.P., UAG Readthrough in Mammalian Cells: Effect of Upstream and Downstream Stop Codon Contexts Reveal Different Signals, BMC Mol. Biol., 2001, vol. 2, p. 3.

    Article  PubMed  CAS  Google Scholar 

  47. Namy, O., Hatin, I., and Rousset, J.P., Impact of the Six Nucleotides Downstream of the Stop Codon on Translation Termination, EMBO Rep., 2001, vol. 2, pp. 787–793.

    Article  PubMed  CAS  Google Scholar 

  48. Namy, O., Duchateau-Nguyen, G., and Rousset, J.P., Translational Readthrough of the PDE2 Stop Codon Modulates cAMP Levels in S. cerevisiae, Mol. Microbiol., 2002, vol. 43, pp. 641–652.

    Article  PubMed  CAS  Google Scholar 

  49. Liu, Q., Comparative Analysis of Base Biases around the Stop Codons in Six Eukaryotes, Biosystems, 2005, vol. 81, pp. 281–289.

    Article  PubMed  CAS  Google Scholar 

  50. Tork, S., Hatin, I., Rousset, J.P., and Fabret, C., The Major 5′ Determinant in Stop Codon Read-Through Involves Two Adjacent Adenines, Nucleic Acids Res., 2004, vol. 32, pp. 415–421.

    Article  PubMed  CAS  Google Scholar 

  51. Zhouravleva, G.A., Moskalenko, S.E., Shabel’skaya, S.V., et al., Increased tRNA Concentration in Yeast Containing Mutant Termination Translation Factors eRF1 and eRF3, Mol. Biol. (Moscow), 2006, vol. 40, pp. 724–730.

    Article  CAS  Google Scholar 

  52. Bonetti, B., Fu, L., Moon, J., and Bedwell, D.M., The Efficiency of Translation Termination Is Determined by a Synergistic Interplay between Upstream and Downstream Sequences in S. cerevisiae, J. Mol. Biol., 1995, vol. 251, pp. 334–345.

    Article  PubMed  CAS  Google Scholar 

  53. Stansfield, I., Eurwilaichitr, L., Akhmaloka, and Tuite, M.F., Depletion in the Levels of the Release Factor eRF1 Causes a Reduction in the Efficiency of Translation Termination in Yeast, Mol. Microbiol., 2006, vol. 20, pp. 1135–1143.

    Article  Google Scholar 

  54. Breining, P. and Piepersberg, W., Yeast Omnipotent Suppressor SUP1 (SUP45): Nucleotide Sequence of the Wild Type and a Mutant Gene, Nucleic Acids Res., 1986, vol. 14, pp. 5187–5197.

    Article  PubMed  CAS  Google Scholar 

  55. Bertram, G., Bell, H.A., Ritchie, D.W., et al., Terminating Eukaryote Translation: Domain 1 of Release Factor eRF1 Functions in Stop Codon Recognition, RNA, 2000, vol. 6, pp. 1236–1247.

    Article  PubMed  CAS  Google Scholar 

  56. Kawakami, K. and Nakamura, Y., Autogenous Suppression of an Opal Mutation in the Gene Encoding Peptide Chain Release Factor 2, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 8432–8436.

    Article  PubMed  CAS  Google Scholar 

  57. Stansfield, I., Akhmaloka, and Tuite, M.F., A Mutant Allele of the SUP45 (SAL4) Gene of S. cerevisiae Shows Temperature-Dependent Allosuppressor and Omnipotent Suppressor Phenotypes, Curr. Genet., 1995, vol. 27, pp. 417–426.

    Article  PubMed  CAS  Google Scholar 

  58. Cosson, B., Couturier, A., Chabelskaya, S., et al., Poly(A)-Binding Protein Acts in Translation Termination via Eukaryotic Release Factor 3 Interaction and Does not Influence [PSI+] Propagation, Mol. Cell. Biol., 2002, vol. 22, pp. 3301–3315.

    Article  PubMed  CAS  Google Scholar 

  59. Stansfield, I., Kushnirov, V.V., Jones, K.M., and Tuite, M.F., A Conditional-Lethal Translation Termination Defect in a sup45 Mutant of the Yeast S. cerevisiae, Eur. J. Biochem., 1997, vol. 245, pp. 557–563.

    Article  PubMed  CAS  Google Scholar 

  60. Moskalenko, S.E., Zhouravleva, G.A., Soom, M.Ya., et al, Characterization of Missense Mutations in the SUR45 Gene of Saccharomyces cerevisiae Encoding Translation Termination Factor eRF1, Genetika (Moscow), 2004, vol. 40, no. 5, pp. 468–484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zhouravleva.

Additional information

Original Russian Text © G.A. Zhouravleva, S.E. Moskalenko, O.A. Murina, S.G. Inge-Vechtomov, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1363–1371.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhouravleva, G.A., Moskalenko, S.E., Murina, O.A. et al. Viable nonsense mutants for the SUP45 gene in the yeast Saccharomyces cerevisiae are lethal at increased temperature. Russ J Genet 43, 1139–1146 (2007). https://doi.org/10.1134/S1022795407100079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407100079

Keywords

Navigation