Skip to main content
Log in

Consequences of selection in highly inbred Drosophila strains

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The results of three long-term breeding and genetic experiments with Drosophila melanogaster performed at different times are summarized. Selections for different fitness components led to similar results. The data on the concentration of viability mutations in the inbred strains LA, LA+, and LA after 400 generations of selection and the strain ULA during its breeding are presented for the first time. The results of studying the genetic heterogeneity and spontaneous mutational process in Drosophila inbred strains comply with the idea of M.E. Lobashev that “a change in the direction of selection or acceleration of its rate is always accompanied by a concurrent increase in mutational variation.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malogolowkin-Cohen, C., Dobzhansky, F., and Simmons, S., Inbreeding and the Mutational and Balanced Loads in Natural Populations of Drosophila willistoni, Genetics, 1964, vol. 50, pp. 1299–1330.

    PubMed  CAS  Google Scholar 

  2. Wright, S., Coefficient of Inbreeding and Relationships, Am. Nat., 1922, vol. 56, pp. 330–338.

    Article  Google Scholar 

  3. Wright, S., Systems of Mating, Genetics, 1921, vol. 6, pp. 111–178.

    PubMed  CAS  Google Scholar 

  4. Kaidanov, L.Z., Mylnikov, S.V., Galkin, A.P., et al., Genetic Effects of Destabilizing Selection for Adaptive Traits of Drosophila melanogaster Strains, Russ. J. Genet., 1997, vol. 33, no. 8, pp. 935–941.

    CAS  Google Scholar 

  5. Kaidanov, L.Z., Genetic Consequences of Selection for Adaptively Important Traits (in the Experiments on Drosophila), Doctoral (Biol.) Dissertation, Leningrad, 1982.

  6. Kaidanov, L.Z. and Subbotin, A.M., The Study of Combinative Ability of Inbred Drosophila Strains, Differing in Adaptive Value, Tsitol. Genet., 1984, vol. 18, no. 6, pp. 429–433.

    Google Scholar 

  7. Kaidanov, L.Z., The Analysis of Genetic Consequences of Selection and Inbreedings in Drosophila melanogaster, Zh. Obshch. Biol., 1979, vol. 40, pp. 834–850.

    Google Scholar 

  8. Kaidanov, L.Z., Kuksinskaya, I.S., and Meksina, N.S., A Genetic Study of the Sexual Behavior of Drosophila melanogaster: I. Breeding and Genetic Analysis of Strains, Differing in Their Sexual Activity, Genetika (Moscow), 1969, vol. 5, no. 9, pp. 116–123.

    Google Scholar 

  9. Kaidanov, L.Z. Losina, M.N., et al., A Genetic Study of the Sexual Behavior of Drosophila melanogaster: II. Restoration of High Male Sexual Activity, Genetika (Moscow), 1972, vol. 8, no. 2, pp. 84–90.

    Google Scholar 

  10. Hague, R. and Kaidanov, L.Z., Evidence for Genetic Control of Longevity in Drosophila melanogaster, Univ. J. Zool. Rajishahi Univ., 1984, vol. 24, pp. 83–84.

    Google Scholar 

  11. Amosova, I.S., Bugaeva, E.A., and Kaidanov, L.Z., Interstrain Hybridological Analysis of Thermal Resistance in Drosophila melanogaster, Genetika (Moscow), 1981, vol. 16, no. 1, pp. 109–114.

    Google Scholar 

  12. Amosova, I.S. and Kaidanov, L.Z., Thermal Resistance in Drosophila melanogaster Lines, Selected for the Differences in Adaptive Important Traits, Tsitol. Genet., 1983, vol. 17, no. 1, pp. 49–54.

    Google Scholar 

  13. Sapunov, V.B. and Kaidanov, L.Z., Interstrain Differences of Juvenile Hormone Activity in Drosophila melanogaster, Vestn. Leningr. Univ., Ser. Biol., 1979, no. 15, pp. 109–112.

  14. Savvateeva, E.V., Labazova, I.V., Pagina, V.V., and Kaidanov, L.Z., Study of cAMP Metabolism in Drosophila melanogaster Strains Selected for the Differences in Male Sexual Activity, Dokl. Akad. Nauk SSSR, 1981, vol. 256, no. 3, pp. 715–717.

    CAS  Google Scholar 

  15. Pakhomov, A.N., Neumyvakin, L.V., Kaidanov, L.Z., and Ponomarenko, V.V., The Study of Composition of Multiple Molecular Cholinesterase Forms in Drosophila melanogaster: I. Differences between Strains, Genetika (Moscow), 1974, vol. 10, no. 10, pp. 68–72.

    Google Scholar 

  16. Tyshchenko, V.P., Osnovy fiziologii nasekomykh (Fundamentals of Insect Physiology), Leningrad: Leningr. Gos. Univ., 1977, part 2.

    Google Scholar 

  17. Kirpichnikova, E.V. and Kaidanov, L.Z., Concentration of Chromosomes with Lethal and Semilethal Mutations in Inbred Selecting Stocks LA and HA of Drosophila melanogaster, Genetika (Moscow), 1973, vol. 9, no. 4, pp. 162–165.

    Google Scholar 

  18. Pole, I.R. and Kaidanov, L.Z., Genetic Analysis of Male Sexual Activity in the HA line of Drosophila melanogaster, Genetika (Moscow), 1978, vol. 14, no. 3, pp. 470–477.

    Google Scholar 

  19. Pole, I.R. and Kaidanov, L.Z., Distribution along the Length of the X Chromosome of Mutations Controlling Low Sexual Activity of Males in the LA Drosophila melanogaster Strain, Genetika, 1978, vol. 14, no. 11, pp. 1913–1918.

    Google Scholar 

  20. Khuguto, N., Glotov, N.V., and Kaidanov, L.Z., Selection for Increased Number of Abdomen Bristles in the Inbred LA and HA Stocks of Drosophila melanogaster, Genetika (Moscow), 1980, vol. 16, no. 7, pp. 1228–1233.

    Google Scholar 

  21. Ivanyushina, V.A. and Kaidanov, L.Z., Genetic Consequences of Selection for Adaptive Traits in Inbred Drosophila melanogaster Strains, Vestn. Leningr. Univ., Ser. Biol., 1982, no. 21, pp. 76–84.

  22. Iovleva, O.V., The Study of Genetic Heterogeniety of Highly Inbred Drosophila melanogaster Strains, Cand. Sci. (Biol.) Dissertation, St. Petersburg: S.-Petrb. Gos. Univ., 2001.

    Google Scholar 

  23. Strunnikov, V.A., Initiation of the Compensating Gene Complex is One of the Factors Causing Heterosis, Zh. Obshch. Biol., 1974, vol. 35, pp. 666–677.

    PubMed  CAS  Google Scholar 

  24. Gorbunova, V.N. and Kaidanov, L.Z., High Frequency of Spontaneous Occurrence of Mutations Affecting Viability in Chromosome 2 of Drosophila melanogaster Strain HA, Genetika (Moscow), 1975, vol. 11, no. 9, pp. 71–83.

    CAS  Google Scholar 

  25. Kaidanov, L.Z. and Ryazanova, L.A., Characteristic of the Spontaneous Mutation Process in the Chromosome 2 in Highly Inbred Lines of Drosophila melanogaster, Vestn. Leningr. Univ., Ser. Biol., 1987, no. 17, pp. 84–90.

  26. Gorbunova, V.N. and Kaidanov, L.Z., Allelism of Spontaneous Viability-Decreasing Mutations in the Second Chromosomes of LA Line of Drosophila melanogaster, Genetika (Moscow), 1976, vol. 12, no. 5, pp. 113–118.

    Google Scholar 

  27. Gvozdev, V.A., Belyaeva, E.Sp., Ilyin, Y.V., et al., Selection and Transposition of Mobile Dispersed Genes in Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol., 1981, vol. 65, pp. 673–685.

    Google Scholar 

  28. Pasyukova, E.G., Belyaeva, E.Sp., Kogan, G.L., et al., Transpositions of Mobile Dispersed Genes Correlated with Changes in Fitness in Drosorhila melanogaster, Genetika (Moscow), 1984, vol. 20, no. 11, pp. 1772–1781.

    Google Scholar 

  29. Pasyukova, E.G., Belyaeva, E.Sp., Kogan, G.L., et al., The Study of Mobile Genetic Elements Coupled with Fitness Changes in Drosophila melanogaster, Mol. Biol. Evol., 1986, vol. 3, pp. 299–312.

    PubMed  CAS  Google Scholar 

  30. Gvozdev, V.A. and Kaidanov, L.Z., Genome Variation Caused by Mobile Element Transposition and Individual Fitness in Drosophila melanogaster, Zh. Obshch. Biol., 1986, vol. 47, pp. 51–63.

    Google Scholar 

  31. Kaidanov, L.Z., Galkin, A.P., Iovleva, O.V., and Sideleva, O.G., Directed Transpositions in the Genome of the mobile hobo Element in a Long-Term Selected Strain of Drosophila melanogaster, Tsitol. Genet., 1996, vol. 30, no. 1, pp. 76–84.

    Google Scholar 

  32. Kidwell, M.G., Kidwell, J.F., and Sved, J.F., Hybrid Dysgenesis in Drosophila melanogaster: A Syndrom of Abberant Traits Including Mutations, Sterility and Male Recombination, Genetics, 1977, vol. 86, pp. 813–833.

    PubMed  Google Scholar 

  33. Engels, W.R., P Element in Drosophila, in Mobile DNA, Berg, D.E. and How, M.M., Eds., Washington: American Society of Microbiology, 1989, pp. 437–484.

    Google Scholar 

  34. Louis, Ch. and Yannopoulos, G., The Genes Involved in Hybrid Dysgenesis in Drosophila melanogaster, in Oxford Surveys of Eukaryotic Genes, McLean, N., Ed., Oxford, 1989, pp. 918–927.

  35. Blackman, R.K and Gerbart, W.M., The Transposable Element hobo of Drosophila melanogaster, in Mobile DNA, Berg, D.E., How, M.M., and Washington, D.C., Eds., Washington: American Society of Microbiology, 1989, pp. 523–529.

    Google Scholar 

  36. Pasyukova, E.G., Belyaeva, E.Sp., Il’inskaya, E.L., and Gvozdev, V.A., Transpositions of Mobile Dispersed Genes (MDG) upon the Replacement of Certain Chromosome Pairs in Drosophila melanogaster Inbred Stocks, Genetika (Moscow), 1987, vol. 23, no. 4, pp. 605–616.

    Google Scholar 

  37. Bolshakov, V.N., Galkin, A.P., Kaidanov, L.Z., et al., Closely Related Drosophila melanogaster Strains with Altered Fitness also Depict Changes in Their hobo Element Properties, Genet. Sel. Evol., 1994, vol. 26, pp. 205–216.

    Article  Google Scholar 

  38. Kaidanov, L.Z., Bolshakov, V.N., Tzygvintzev, P.N., and Gvozdev, V.A., The Sources of Genetic Variability in Highly Inbred Long-Term Strains of Drosophila melanogaster, Genetica (The Hague), 1991, vol. 85, pp. 73–78.

    CAS  Google Scholar 

  39. Kuznetsova, O.V., Iovleva, O.V., and Kaidanov, L.Z., Spontaneous Mutation Process in HA Stocks of Drosophila melanogaster: I. Recessive Lethal Mutations in the Second Chromosome, Vestn. S.-Peterb. Gos. Univ., Ser. 3., 1996, no. 4, pp. 225–229.

  40. Ratner, V.A. and Vasil’eva, L.A., Mobile Genetic Elements and Quantitative Traits in Drosophila: Facts and Hypotheses, Genetika (Moscow), 1992, vol. 28, no. 11, pp. 15–27.

    CAS  Google Scholar 

  41. Wilkins, A.S., Drosophila melanogaster from Oocyte to Blastoderm, in Genetic Analysis of Animal Development, New York, 1985, pp. 78–150.

  42. Mylnikov, S.V., Dynamics of Embryonic Lethality in Inbred Drosophila Strains, Ontogenez, 1991, vol. 22, pp. 93–95.

    CAS  Google Scholar 

  43. Luchnikova, E.M., Inge-Vechtomov, S.G., Ibragimov, A.I., and Levchenko, A.B., Influence of Sterol Metabolism in Yeast Saccharomyces cerevisiae on the Metamorphosis and Reproduction of Drosophila melanogaster in the Two-Layer System: Producer-Consumer, in Issledovaniya po genetike (Research in Genetics), Leningrad: Leningr. Gos. Univ., 1981, pp. 54–65.

    Google Scholar 

  44. Bondarenko, L.V., Luchnikova, E.M., and Inge-Vechtomov, S.G., Influence of Sterol Metabolism on the Drosophila Female Fertility in Ecological Genetic System Yeasts-Drosophila, Ontogenez, 1989, vol. 20, no. 2, pp. 141–148.

    PubMed  CAS  Google Scholar 

  45. Mylnikov, S.V., Formation of Adaptive Genetic System in Inbred Strain of Drosophila melanogaster Selected for a High Embryonal Mortality, Tsitol. Genet., 1991, vol. 25, no. 4, pp. 67–72.

    CAS  Google Scholar 

  46. Mazing, R.A., Analysis of Viability among Flies of Drosophila mlanogaster Heterozygous for Natural Lethals, Dokl. Akad. Nauk SSSR, 1939, vol. 25, no. 1, pp. 65–68.

    Google Scholar 

  47. Tano, S., Studies of Clustered Recessive Lethals on the Second Chromosome of Drosophila melanogaster, Jap. J. Genet., 1966, vol. 41, no. 4, pp. 299–308.

    Google Scholar 

  48. Golubovskii, M.D., Viability of Lethal Mutation Heterozygotes, Characterized by Different Concentration in Natural Drosophila Populations, Genetika (Moscow), 1969, vol. 5, no. 8, pp. 116–126.

    Google Scholar 

  49. Alexandrov, Y.N. and Golubovsky, M.D., The Multicite Mutation, Induced by Viruses and Foreign DNA Can Spread in Natural Populations of Drosophila, Dros. Inf. Serv., 1983, vol. 59, pp. 10–11.

    Google Scholar 

  50. Simmons, M.J. and Crow, J.F., Mutation Affecting Fitness in Drosophila Populations, Ann. Rav. Genet., 1977, vol. 11, p. 49.

    Article  CAS  Google Scholar 

  51. Abrahamson, S., Wurgler, F.E., De Jong, C., and Meyer, H.U., How Many Loci on the X Chromosome of Drosophila melanogaster Can Mutate to Recessive Lethals, Env. Mutagen, 1980, vol. 2, p. 447.

    Article  CAS  Google Scholar 

  52. Gershenzon, S.M. and Aleksandrov, Yu.N., Mutagenic Effects of Natural and Synthetic Polynucleotides and the Problem of Targeted Mutations, Zh. Obshch. Biol., 1982, vol. 43, no. 6, pp. 747–763.

    CAS  Google Scholar 

  53. Gershenzon, S.M., Aleksandrov, Yu.N., and Malyuta, S.S., Mutagennoe deistvie DNK i virusov u drozofily (Mutagenic Action of DNA and Viruses in Yeasts), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  54. Aleksandrov, Yu.N. and Gershenzon, S.M., Specificity of Mutagenic Action of Synthetic Polynucleotides, Biopolim. Kletka, 1985, vol. 1, no. 1, pp. 21–25.

    CAS  Google Scholar 

  55. Ryazanova, L.A. and Myl’nikov, S.V., Characteristics of Spontaneous Mutation and Recombination Processes in Selected Inbred Strains of Drosorhila melanogaster, in V S” ezd VOGiS im. N.I. Vavilova: Tez. dokl (Abstr. V Congress of Vavilov All-Union Society of Geneticists and Breeders), Moscow, 1987, vol. 1, pp. 240–241.

    Google Scholar 

  56. Gerasimova, T.I., Hybrid Dysgenesis, Mutator Systems, and Instability Factors in Drosorhila melanogaster: Results of Genetic and Molecular Biological Studies, Genetika (Moscow), 1981, vol. 17, no. 5, pp. 773–781.

    Google Scholar 

  57. Lobashev, M.E., Physiological (Paranecrotic) Hypothesis of the Mutation Process, Vestn. Leningr. Univ., 1947, no. 8, pp. 10–29.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Iovleva.

Additional information

Original Russian Text © O.V. Iovleva, S.V. Mylnikov, 2007, published in Genetika, 2007, Vol. 43, No. 10, pp. 1328–1340.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iovleva, O.V., Mylnikov, S.V. Consequences of selection in highly inbred Drosophila strains. Russ J Genet 43, 1108–1119 (2007). https://doi.org/10.1134/S1022795407100043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407100043

Keywords

Navigation