Skip to main content
Log in

Effects of reciprocal crosses on agronomic performance of tritordeum

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Tritordeums (Tritordeum Ascherson et Graebner) are the amphiploids derived from the crosses between Hordeum chilense and durum or bread wheats. Primary tritordeums are obtained using H. chilense as female parent and therefore they exhibit H. chilense cytoplasm. The effect of wheat cytoplasm on agronomic performance of tritordeums was investigated. We developed four pairs of reciprocal F1 lines only differing in their cytoplasm, donated from wheat or H. chilense alternatively. The agronomic performance of reciprocal F1 lines contrasting for their cytoplasm was evaluated. The following traits were assessed: leave and tillers number one month after sowing, plant height, anthesis date, total number of ears, number of spikelets per spike, fertility of the main spike, length and wide of the flag leaf in the main stem and thousand kernel weight. Reciprocal F1 lines did not differ for any of the agronomic traits evaluated with the exception of anthesis date in the pair THC1726/HTC1727. Therefore, both wheat and H. chilense cytoplasms can be used in tritordeum breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAOSTAT, http://Apps.Fao.Org, 2004.

  2. FAO, The State of the World’s Plant Genetic Resources for Food and Agriculture, Rome, 1997.

  3. Martin, A., Martínez, C., Rubiales, D., and Ballesteros, J., Tritordeum: Triticale’s New Brother Cereal Triticale: Today and Tomorrow, Dordrecht, 1996, pp. 57–72.

  4. Atienza, S.G., Gimenez, M.J., Martin, A., and Martin, L.M., Variability in Monomeric Prolamins in Hordeum chilense, Theor. Appl. Genet., 2000, vol. 101, pp. 970–976.

    Article  CAS  Google Scholar 

  5. Atienza, S.G., Alvarez, J.B., Villegas, A.M., et al., Variation for the Low-Molecular-Weight Glutenin Subunits in a Collection of Hordeum chilense, Euphytica, 2002, vol. 128, pp. 269–277.

    Article  CAS  Google Scholar 

  6. Atienza, S.G., Satovic, Z., Martin, A., and Martin, L.M., Genetic Diversity in Hordeum chilense Roem. et Schult. Germplasm Collection as Determined by Endosperm Storage Proteins, Genet. Res. Crop Evol., 2005, vol. 52, pp. 127–135.

    Article  CAS  Google Scholar 

  7. Martin, A. and Cabrera, A., Cytogenetics of Hordeum chilense: Current Status and Considerations with Reference to Breeding, Cytogenet. Genome Res., 2005, vol. 109, pp. 378–384.

    Article  PubMed  CAS  Google Scholar 

  8. Atienza, S.G., Ramírez, M.C., Hernández, P., and Martín, A., Chromosomal Location of Genes for Carotenoid Pigments in Hordeum chilense, Plant Breed., 2004, vol. 123, pp. 303–304.

    Article  CAS  Google Scholar 

  9. Bothmer, R.V. and Jacobsen, N., Interspecific Crosses in Hordeum (Poaceae), Pl. Syst. Evol., 1986, vol. 153, pp. 49–64.

    Article  Google Scholar 

  10. Martin, A., Martin, L.M., Cabrera, A., et al., The Potential of Hordeum chilense in Breeding Triticeae Species (Triticeae Iii), Enfield, CT, 1998, pp. 377–386.

  11. Martin, A. and Chapman, V., A Hybrid between Hordeum chilense and Triticum aestivum, Cereal Res. Communs., 1977, vol. 5, pp. 365–368.

    Google Scholar 

  12. Martin, A. and Laguna, E.S., Cytology and Morphology of the Amphiploid Hordeum chilense × Triticum turgidum Conv durum, Euphytica, 1982, vol. 31, pp. 261–267.

    Article  Google Scholar 

  13. Martin, A., Alvarez, J.B., Martin, L.M., et al., The Development of Tritordeum: A Novel Cereal for Food Processing, J. Cereal Sci., 1999, vol. 30, pp. 85–95.

    Article  Google Scholar 

  14. Shonnard, G.C. and Gepts, P., Genetics of Heat Tolerance during Reproductive Development in Common Bean, Crop. Sci., 1994, vol. 34, pp. 1168–1175.

    Article  Google Scholar 

  15. Matsui, K., Yoshida, M., Ban, T., et al., Role of Male-Sterile Cytoplasm in Resistance to Barley Yellow Mosaic Virus and Fusarium Head Blight in Barley, Plant Breed., 2002, vol. 121, pp. 237–240.

    Article  Google Scholar 

  16. Zhang, A., Yu, F., and Zhang, F., Alien Cytoplasm Effects on Phytosiderophore Release in Two Spring Wheats (Triticum aestivum L.), Genet. Res. Crop Evol., 2003, vol. 50, pp. 767–772.

    Article  CAS  Google Scholar 

  17. Hernández, P., Barcelo, P., Martin, A., and Cabrera, A., The Effect of Hordeum chilense and Triticum cytoplasm on Anther Culture Response of Tritordeum, Plant Cell Rep., 2001, vol. 20, pp. 542–546

    Article  CAS  Google Scholar 

  18. Allen, J.O., Effect of Teosinte Cytoplasmic Genomes on Maize Phenotype, Genetics, 2005, vol. 169, pp. 863–880.

    Article  PubMed  CAS  Google Scholar 

  19. Tsunewaki, K., Wang, G.-Z., and Matsuoka, Y., Plasmon Analysis of Triticum (Wheat) and Aegilops: 1. Production of Alloplasmic Common Wheat and Their Fertilities, Genes Genet. Syst., 1996, vol. 71, pp. 293–311.

    Article  PubMed  CAS  Google Scholar 

  20. Tsunewaki, K., Wang, G.-Z., and Matsuoka, Y., Plasmon Analysis of Triticum (Wheat) and Aegilops: 2. Characterization and Classification of 47 Plasmon Based on Their Effects on Common Wheat Phenotype, Genes Genet. Syst., 2002, vol. 77, pp. 409–427.

    Article  PubMed  CAS  Google Scholar 

  21. Fukasawa, H., Nucleus Substitution and Restoration by Means of Successive Backcrosses in Wheat and Its Related Genus Aegilops, Japan. J. Bot., 1959, vol. 17, pp. 55–91

    Google Scholar 

  22. Soliman, K., Fedak, G., and Allard, R.W., Inheritance of Organelle DNA in Barley and Hordeum × Secale Intergeneric Hybrids, Genome, 1987, vol. 29, pp. 867–872.

    CAS  Google Scholar 

  23. Laser, B., Mohr, S., Odenbach, W., et al., Parental and Novel Copies of the Mitochondrial Orf25 Gene in the Hybrid Crop-Plant Triticale: Predominant Transcriptional Expression of the Maternal Gene Copy, Curr. Genet., 1997, vol. 32, pp. 337–347.

    Article  PubMed  CAS  Google Scholar 

  24. Aksyonova, E., Sinyavskaya, M., Danilenko, N., et al., Heteroplasmy and Paternally Oriented Shift of the Organellar DNA Composition in Barley-Wheat Hybrids during Backcrosses with Wheat Parents, Genome, 2005, vol. 48, pp. 761–769.

    PubMed  CAS  Google Scholar 

  25. Foley, M.E. and Fennimore, S.A., Genetic Basis for Seed Dormancy, Seed Sci. Res., 1998, vol. 8, pp. 173–182.

    Article  Google Scholar 

  26. Hirschberg, J., Carotenoid Biosynthesis in Flowering Plants, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 210–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Atienza.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atienza, S.G., Ramírez, M.C., Martín, A. et al. Effects of reciprocal crosses on agronomic performance of tritordeum. Russ J Genet 43, 865–868 (2007). https://doi.org/10.1134/S1022795407080054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407080054

Keywords

Navigation