Skip to main content
Log in

Genomic changes at early stages of formation of allopolyploid Aegilops longissima × Triticum urartu

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using the model of synthetic allopolyploid Aegilops longissima TL05 × Triticum urartu TMU06 of the first generation, the degree and character of changes in subtelomeric, microsatellite and random amplified DNA sequences (RAPD) on early stage of polyploidization was estimated. Study of genome changes was performed by comparing PCR fragments of the allopolyploid and its parental forms. For analysis of subtelomeric DNA, we used 66 pairs of primers composed of 11 singular primers designed for these chromosomal regions sequences of cereals. RAPD analysis was performed with usage of 38 primers, in microsatellite (SSR) analysis 23 primer pairs were used. RAPD analysis appeared to be a more effective PCR-based method to identify genome changes. Absence of some RAPD fragments typical for parental genome in allopolyploid TL05 × TMU06 was shown using 13 primers of 38 (34%), and with usage of subtelomeric primers the changes in PCR fragments were shown only for one of 66 pairs of primers (1.5%). SSR loci were stable during the polyploidization process. Subsequent analysis of PCR fragments absent in the synthetic allopolyploid showed that high level of genome changes in RAPD analysis is probably connected with more effective ability of this method to reveal point mutations. Some data was found suggesting that not all genome changes observed in experimentally synthesized allopolyploids of the first generation are consequences of coadaptation of few genomes in one nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soltis, D.E. and Soltis, P.S., The Dynamic Nature of Polyploid Genomes, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8089–8091.

    Article  PubMed  CAS  Google Scholar 

  2. Wendel, J.F., Genome Evolution in Polyploids, Plant. Mol. Biol., 2000, vol. 42, pp. 225–249.

    Article  PubMed  CAS  Google Scholar 

  3. Axelsson, T., Bowman, C.M., Sharpe, A.G., et al., Amphidiploid Brassica juncea Contains Conserved Progenitor Genomes, Genome, 2000, vol. 43, pp. 679–688.

    Article  PubMed  CAS  Google Scholar 

  4. Skalicka, K., Lim, K.Y., Matyasek, R., et al., Preferential Elimination of Repeated DNA Sequences from the Paternal, Nicotiana tomentosiformis Genome Donor of a Synthetic Allotetraploid Tobacco, New Phytol., 2005, vol. 166, pp. 291–303.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, B., Brubaker, C.L., Mergeai, G., et al., Polyploid Formation in Cotton Is Not Accompanied by Rapid Genomic Changes, Genome, 2001, vol. 44, pp. 321–330.

    Article  PubMed  CAS  Google Scholar 

  6. Levy, A. and Feldman, M., Genetic and Epigenetic Reprogramming of the Wheat Genome upon Allopolyploidisation, Biol. J. Linnaean Soc., 2004, vol. 82, pp. 607–613.

    Article  Google Scholar 

  7. Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops-Triticum) Group, Plant Cell, 2001, vol. 13, pp. 1735–1747.

    Article  PubMed  CAS  Google Scholar 

  8. Shaked, H., Kashkush, K., Ozkan, H., et al., Sequence Elimination and Cytosine Methylation Are Rapid and Reproducible Responses of the Genome to Wide Hybridization and Allopolyploidy in Wheat, Plant Cell, 2001, vol. 13, pp. 1749–1759.

    Article  PubMed  CAS  Google Scholar 

  9. Kashkush, K., Feldman, M., and Levy, A.A., Transcriptional Activation of Retrotransposons Alters the Expression of Adjacent Genes in Wheat, Nat. Genet., 2003, vol. 33, pp. 102–106.

    Article  PubMed  CAS  Google Scholar 

  10. Salina, E.A., Numerova, O.M., Ozkan, H., and Feldman, M., Alterations in Subtelomeric Tandem Repeats during Early Stages of Allopolyploidy in Wheat, Genome, 2004, vol. 47, pp. 860–867.

    Article  PubMed  CAS  Google Scholar 

  11. Levy, A.V. and Feldman, M., The Impact of Polyploidy on Grass Genome Evolution, Plant Physiol., 2002, vol. 130, pp. 1587–1593.

    Article  PubMed  CAS  Google Scholar 

  12. Salina, E.A., Lim, Y.K., Badaeva, E.D., et al., Phylogenetic Reconstruction of Aegilops Section Sitopsis and the Evolution of Tandem Repeats in the Diploids and Derived Wheat Polyploids, Genome, 2006, vol. 49, pp. 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  13. Salina, E., Adonina, I., Vatolina, T., and Kurata, N., A Comparative Analysis of the Composition and Organization of Two Subtelomeric Repeat Families in Aegilops speltoides Tausch. and Related Species, Genetics, 2004, vol. 122, pp. 227–237.

    Article  CAS  Google Scholar 

  14. Roeder, M.S., Korzun, V., Wendehake, K., et al., A Microsatellite Map of Wheat, Genetics, 1998, vol. 149, pp. 2007–2023.

    Google Scholar 

  15. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory, Manual, New York: Cold Spring Harb. Lab., 1982.

    Google Scholar 

  16. Altchul, S.F., Gish, W., Miller, W., et al., Basic Local Alignment Search Tool, J. Biol., 1990, vol. 215, pp. 403–410.

    Google Scholar 

  17. Feinberg, A.P. and Vogelstein, B.A., A Technique for Radiolabelling DNA Restriction Endonuclease Fragments to High Specific Activity, Anal. Biochem., 1983, vol. 132, pp. 6–13.

    Article  PubMed  CAS  Google Scholar 

  18. Adonina, I.G., Salina, E.A., Pestsova, E.G., and Roeder, M.S., Transferability of Wheat Microsatellites to Diploid Aegilops Species and Determination of Chromosomal Localizations of Microsatellites in the S Genome, Genome, 2005, vol. 48, pp. 959–970.

    Article  PubMed  CAS  Google Scholar 

  19. Salina, E.A., Leonova, I.N., Efremova, T.T., and Roeder, M.S., Wheat Genome Structure: Translocations during the Course of Polyploidization, Funct. Integr. Genomics, 2006, vol. 6, pp. 71–80.

    Article  PubMed  CAS  Google Scholar 

  20. Penner, G.A, RARD Analysis Plant Genome, Method of Genome Analysis in Plants, Jauhar, P.P., Ed., New York: CRC, 1996, pp. 252–264.

    Google Scholar 

  21. Bildanova, L.L., Salina, E.A., and Pershina, L.A., Investigation of the Backcross Progeny of Barley-Wheat Hybrids by the RARD and RAMRO Methods, Russ. J. Genet., 2002, vol. 38, pp. 257–263.

    Article  CAS  Google Scholar 

  22. Schlotterer, C., Evolutionary Dynamics of Microsatellite DNA, Chromosoma, 2000, vol. 109, pp. 365–371.

    PubMed  CAS  Google Scholar 

  23. Palomi, M.A. and Damiano, C., Comparison between RAPD and SSR Molecular Markers in Detecting Genetic Variation in Kiwifruit (Actinidia deliciosa A. Chev.), Plant Cell Rep., 2002, vol. 21, pp. 1061–1066.

    Google Scholar 

  24. Rahman, M.H. and Rajora, O.P., Microsatellite DNA Somaclonal Variation in Micropropagated Trembling Aspen (Populus tremuloides), Plant Cell Rep., 2001, vol. 20, pp. 531–536.

    Article  CAS  Google Scholar 

  25. Dobrovol’skaya, O.B., Characterization of Wheat-Rye Translocation Lines Using Microsatellite Markers and the Study of Individual Rye Chromosome Influence on Androgenesis Indexes in Vitro, Cand. Sci. (Biol.) Dissertation, Novosibirsk: Inst. Cytol. Genet., Rus. Acad. Sci., 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.B. Shcherban, E.K. Khlestkina, E.M. Sergeeva, E.A. Salina, 2007, published in Genetika, 2007, Vol. 43, No. 7, pp. 963–970.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherban, A.B., Khlestkina, E.K., Sergeeva, E.M. et al. Genomic changes at early stages of formation of allopolyploid Aegilops longissima × Triticum urartu . Russ J Genet 43, 798–804 (2007). https://doi.org/10.1134/S1022795407070125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407070125

Keywords

Navigation