Skip to main content

Advertisement

Log in

Nuclear receptors: Structure and mechanisms of action

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Nuclear receptors are a superfamily of conserved transcription factors with a unique domain structure. Nuclear receptors play an important role in the regulation of ontogeny, sexual maturation, and cell differentiation, as well as in various metabolic processes. Owing to the specifics of hormonal signaling, Drosophila melanogaster provides a promising model subject for studying the function and regulation of nuclear receptors. The review considers modern data on the molecular structure of nuclear receptors and the mechanisms of their interactions with ligands and transcription cofactors. The known functions of nuclear receptors in regulating embryo development and metamorphosis in D. melanogaster are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King-Jones, K. and Thummel, C.S., Nuclear Receptors—A Perspective from Drosophila, Nat. Rev. Genet., 2005, vol. 6, pp. 311–323.

    Article  PubMed  CAS  Google Scholar 

  2. Thornton, J.W., Nonmammalian Nuclear Receptors: Evolution and Endocrine Disruption, Pure Appl. Chem., 2003, vol. 75, pp. 1827–1839.

    CAS  Google Scholar 

  3. Segraves, W.A. and Hogness, D.S., The E75 Ecdysone-Inducible Gene Responsible for the 75B Early Puff in Drosophila Encodes Two New Members of the Steroid Receptor Superfamily, Genes Dev., 1990, vol. 4, pp. 204–219.

    PubMed  CAS  Google Scholar 

  4. Chawla, A., Repa, J.J., Evans, R.M., and Mangelsdorf, D.J., Nuclear Receptors and Lipid Physiology: Opening the X-Files, Science, 2001, vol. 294, pp. 1866–1870.

    Article  PubMed  CAS  Google Scholar 

  5. McKenna, N.J., Lanz, R.B., and O’Malley, B.W., Nuclear Receptor Coregulators: Cellular and Molecular Biology, Endocrinol. Rev., 1999, vol. 20, pp. 321–344.

    Article  CAS  Google Scholar 

  6. Hammer, G.D., Krylova, I., Zhang, Y., et al., Phosphorylation of the Nuclear Receptor SF-1 Modulates Cofactor Recruitment: Integration of Hormone Signaling in Reproduction and Stress, Mol. Cell., 1999, vol. 3, pp. 521–526.

    Article  PubMed  CAS  Google Scholar 

  7. Busch, B.B., Stevens, W.C., Martin, R., et al., Identification of a Selective Inverse Agonist for the Orphan Nuclear Receptor Estrogen-Related Receptor α, J. Med. Chem., 2004, vol. 47, pp. 5593–5596.

    Article  PubMed  CAS  Google Scholar 

  8. McKenna, N.J. and O’Malley, B.W., Minireview: Nuclear Receptor Coactivators—An Update, Endocrinology, 2002, vol. 143, pp. 2461–2465.

    Article  PubMed  CAS  Google Scholar 

  9. Ito, M., Yuan, C.X., Okano, H.J., et al., Involvement of the TRAP220 Component of the TRAP/SMCC Coactivator Complex in Embryonic Development and Thyroid Hormone Action, Mol. Cell, 2000, vol. 5, pp. 683–693.

    Article  PubMed  CAS  Google Scholar 

  10. Rochette-Egly, C., Adam, S., Rossignol, M., et al., Stimulation of RAR α Activation Function AF-1 through Binding to the General Transcription Factor TFIIH and Phosphorylation by CDK7, Cell, 1997, vol. 90, pp. 97–107.

    Article  PubMed  CAS  Google Scholar 

  11. Hur, E., Pfaff, S.J., Payne, E.S., et al., Recognition and Accommodation at the Androgen Receptor Coactivator Binding Interface, PLoS Biol., 2004, vol. 2, p. E274.

    Article  PubMed  CAS  Google Scholar 

  12. Sanglier, S., Bourguet, W., Germain, P., et al., Monitoring Ligand-Mediated Nuclear Receptor-Coregulator Interactions by Noncovalent Mass Spectrometry, Eur. J. Biochem., 2004, vol. 271, pp. 4958–4967.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, J.E., Kim, K., Sacchettini, J.C., et al., DRIP150 Coactivation of Estrogen Receptor α in ZR-75 Breast Cancer Cells Is Independent of LXXLL Motifs, J. Biol. Chem., 2005, vol. 280, pp. 8819–8830.

    Article  PubMed  CAS  Google Scholar 

  14. Takeyama, K., Masuhiro, Y., Fuse, H., et al., Selective Interaction of Vitamin D Receptor with Transcriptional Coactivators by a Vitamin D Analog, Mol. Cell. Biol., 1999, vol. 19, pp. 1049–1055.

    PubMed  CAS  Google Scholar 

  15. Kozlova, T. and Thummel, C.S., Spatial Patterns of cdysteroid Receptor Activation during the Onset of Drosophila Metamorphosis, Development, 2002, vol. 129, pp. 1739–1750.

    PubMed  CAS  Google Scholar 

  16. Champlin, D.T. and Truman, J.W., Ecdysteroid Control of Cell Proliferation during Optic Lobe Neurogenesis in the Moth Manduca sexta, Development, 1998, vol. 125, pp. 269–277.

    PubMed  CAS  Google Scholar 

  17. Yao, T.P., Forman, B.M., Jiang, Z., et al., Functional Ecdysone Receptor Is the Product of EcR and Ultraspiracle Genes, Nature, 1993, vol. 366, pp. 476–479.

    Article  PubMed  CAS  Google Scholar 

  18. Clayton, G.M., Peak-Chew, S.Y., Evans, R.M., and Schwabe, J.W., The Structure of the Ultraspiracle Ligand-Binding Domain Reveals a Nuclear Receptor Locked in an Inactive Conformation, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 1549–1554.

    Article  PubMed  CAS  Google Scholar 

  19. Billas, I.M., Iwema, T., Garnier, J.M., et al., Structural Adaptability in the Ligand-Binding Pocket of the Ecdysone Hormone Receptor, Nature, 2003, vol. 426, pp. 91–96.

    Article  PubMed  CAS  Google Scholar 

  20. Schubiger, M. and Truman, J.W., The RXR Ortholog USP Suppresses Early Metamorphic Processes in Drosophila in the Absence of Ecdysteroids, Development, 2000, vol. 127, pp. 1151–1159.

    PubMed  CAS  Google Scholar 

  21. Schubiger, M., Tomita, S., Sung, C., et al., Isoform-Specific Control of Gene Activity in Vivo by the Drosophila Ecdysone Receptor, Mech. Dev., 2003, vol. 120, pp. 909–918.

    Article  PubMed  CAS  Google Scholar 

  22. White, K.P., Hurban, P., Watanabe, T., and Hogness, D.S., Coordination of Drosophila Metamorphosis by Two Ecdysone-Induced Nuclear Receptors, Science, 1997, vol. 276, pp. 114–117.

    Article  PubMed  CAS  Google Scholar 

  23. Ashburner, M., Chihara, C., Meltzer, P., and Richards, G., Temporal Control of Puffing Activity in Polytene Chromosomes, Cold Spring. Harb. Symp. Quant. Biol., 1974, vol. 38, pp. 655–662.

    PubMed  CAS  Google Scholar 

  24. Andres, A.J. and Thummel, C.S., Hormones, Puffs and Files: The Molecular Control of Metamorphosis by Ecdysone, Trends Genet., 1992, vol. 8, pp. 132–138.

    PubMed  CAS  Google Scholar 

  25. Bialecki, M., Shilton, A., Fichtenberg, C., et al., Loss of the Ecdysteroid-Inducible E75A Orphan Nuclear Receptor Uncouples Molting from Metamorphosis in Drosophila, Dev. Cell, 2002, vol. 3, pp. 209–220.

    Article  PubMed  CAS  Google Scholar 

  26. Huet, F., Ruiz, C., and Richards, G., Sequential Gene Activation by Ecdysone in Drosophila melanogaster: The Hierarchical Equivalence of Early and Early Late Genes, Development, 1995, vol. 121, pp. 1195–1204.

    PubMed  CAS  Google Scholar 

  27. Russell, S.R., Heimbeck, G., Goddard, C.M., et al., The Drosophila Eip78C Gene Is not Vital but Has a Role in Regulating Chromosome Puffs, Genetics, 1996, vol. 144, pp. 159–170.

    PubMed  CAS  Google Scholar 

  28. Koelle, M.R., Segraves, W.A., and Hogness, D.S., DHR3: A Drosophila Steroid Receptor Homolog, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 6167–6171.

    Article  PubMed  CAS  Google Scholar 

  29. Carney, G.E., Wade, A.A., Sapra, R., et al., DHR3, an Ecdysone-Inducible Early-Late Gene Encoding a Drosophila Nuclear Receptor, Is Required for Embryogenesis, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 12 024–12 029.

    Article  CAS  Google Scholar 

  30. Lam, G.T., Jiang, C., and Thummel, C.S., Coordination of Larval and Prepupal Gene Expression by the DHR3 Orphan Receptor during Drosophila Metamorphosis, Development, 1997, vol. 124, pp. 1757–1769.

    PubMed  CAS  Google Scholar 

  31. Lam, G., Hall, B.L., Bender, M., and Thummel, C.S., DHR3 Is Required for the Prepupal-Pupal Transition and Differentiation of Adult Structures during Drosophila Metamorphosis, Dev. Biol., 1999, vol. 212, pp. 204–216.

    Article  PubMed  CAS  Google Scholar 

  32. Bois-Joyeux, B., Chauvet, C., Nacer-Cherif, H., et al., Modulation of the Far-Upstream Enhancer of the Rat α-Fetoprotein Gene by Members of the ROR α, Rev-erb α, and Rev-erb β Groups of Monomeric Orphan Nuclear Receptors, DNA Cell Biol., 2000, vol. 19, pp. 589–599.

    Article  PubMed  CAS  Google Scholar 

  33. Forman, B.M., Chen, J., Blumberg, B., et al., Cross-Talk among ROR α1 and the Rev-erb Family of Orphan Nuclear Receptors, Mol. Endocrinol., 1994, vol. 8, pp. 1253–1261.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, Y. and Dufau, M.L., Gene Silencing by Nuclear Orphan Receptors, Vitam. Horm., 2004, vol. 68, pp. 1–48.

    Article  PubMed  CAS  Google Scholar 

  35. Kallen, J.A., Schlaeppi, J.M., Bitsch, F., et al., X-ray Structure of the hRORα LBD at 1.63 Å: Structural and Functional Data That Cholesterol or a Cholesterol Derivative Is the Natural Ligand of RORα, Structure, 2002, vol. 10, pp. 1697–1707.

    Article  PubMed  CAS  Google Scholar 

  36. Stehlin-Gaon, C., Willmann, D., Zeyer, D., et al., All-Trans Retinoic Acid Is a Ligand for the Orphan Nuclear Receptor ROR β, Nat. Struct. Biol., 2003, vol. 10, pp. 820–825.

    Article  PubMed  CAS  Google Scholar 

  37. Bitsch, F., Aichholz, R., Kallen, J., et al., Identification of Natural Ligands of Retinoic Acid Receptor-Related Orphan Receptor α Ligand-Binding Domain Expressed in Sf9 Cells—A Mass Spectrometry Approach, Anal. Biochem., 2003, vol. 323, pp. 139–149.

    Article  PubMed  CAS  Google Scholar 

  38. Yamada, M., Murata, T., Hirose, S., et al., Temporally Restricted Expression of Transcription Factor βFTZ-F1: Significance for Embryogenesis, Molting and Metamorphosis in Drosophila melanogaster, Development, 2000, vol. 127, pp. 5083–5092.

    PubMed  CAS  Google Scholar 

  39. Horner, M.A., Chen, T., and Thummel, C.S., Ecdysteroid Regulation and DNA-Binding Properties of Drosophila Nuclear Hormone Receptor Superfamily Members, Dev. Biol., 1995, vol. 168, pp. 490–502.

    Article  PubMed  CAS  Google Scholar 

  40. Horner, M. and Thummel, C.S., Mutations in the DHR39 Orphan Receptor Gene Have no Effect on Viability, Dros. Inf. Serv., 1997, vol. 80, pp. 35–37.

    Google Scholar 

  41. Yu, Y., Li, W., Su, K., et al., The Nuclear Hormone Receptor Ftz-F1 Is a Cofactor for the Drosophila Homeodomain Protein Ftz, Nature, 1997, vol. 385, pp. 552–555.

    Article  PubMed  CAS  Google Scholar 

  42. Guichet, A., Copeland, J.W., Erdelyi, M., et al., The Nuclear Receptor Homologue Ftz-F1 and the Homeodomain Protein Ftz Are Mutually Dependent Cofactors, Nature, 1997, vol. 385, pp. 548–552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © J.V. Nikolenko, A.N. Krasnov, 2007, published in Genetika, 2007, Vol. 43, No. 3, pp. 308–316.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolenko, J.V., Krasnov, A.N. Nuclear receptors: Structure and mechanisms of action. Russ J Genet 43, 234–240 (2007). https://doi.org/10.1134/S1022795407030027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795407030027

Keywords

Navigation