Skip to main content

Structural Analysis of Heterodimeric Nuclear Receptors

  • Chapter
  • First Online:
Nuclear Receptors: From Structure to the Clinic
  • 823 Accesses

Abstract

Nuclear receptors are ligand dependent transcription factors that control gene expression by coordinating protein assemblies. Their modular organization confers the necessary flexibility to adapt their conformation to multiple different partners. They either function as homo or heterodimers with a common partner (RXR in vertebrates). The present chapter deals with the large subgroup of heterodimers for which seven solution structures and two crystal structures of DNA bound receptors are presently available. The results show the molecular architecture of the complexes and illustrate the adaptability of the receptors while revealing some common features like their L-shape open conformation with an asymmetric position of the ligand binding domains. The structural data enlighten the important role of the promoter and the protein hinges into the spatial organization of the DNA and ligand binding domains. They explain how DNA dictates the topology of the complex and its asymmetry, thus remodeling the interaction surfaces according to the different response elements. The structural investigations provide additional information related to the dynamics of the regulation process like the solution structure of the free RARα/RXRα heterodimer, the binding mode of protein cofactors and the stoichiometry of the resulting complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoyagi S, Archer TK (2008) Dynamics of coactivator recruitment and chromatin modifications during nuclear receptor mediated transcription. Mol Cell Endocrinol 280:1–5. doi:10.1016/j.mce.2007.08.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billas IM, Moulinier L, Rochel N, Moras D (2001) Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 276:7465–7474. doi:10.1074/jbc.M008926200

    Article  CAS  PubMed  Google Scholar 

  • Billas IML, Iwema T, Garnier J-M et al (2003) Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426:91–96. doi:10.1038/nature02112

    Article  CAS  PubMed  Google Scholar 

  • Bourguet W, Ruff M, Chambon P et al (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375:377–382. doi:10.1038/375377a0

    Article  CAS  PubMed  Google Scholar 

  • Bourguet W, Germain P, Gronemeyer H (2000) Nuclear receptor ligand-binding domains: Three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21:381–388. doi:10.1016/S0165-6147(00)01548-0

    Article  CAS  PubMed  Google Scholar 

  • Brelivet Y, Kammerer S, Rochel N et al (2004) Signature of the oligomeric behaviour of nuclear receptors at the sequence and structural level. EMBO Rep 5:423–429. doi:10.1038/sj.embor.7400119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bulynko YA, O’Malley BW (2011) Nuclear receptor coactivators: Structural and functional biochemistry. Biochemistry (Mosc) 50:313–328. doi:10.1021/bi101762x

    Article  CAS  Google Scholar 

  • Chandra V, Huang P, Hamuro Y et al (2008) Structure of the intact PPAR-g-RXR-a nuclear receptor complex on DNA. Nature 456:350–356. doi:10.1038/nature07413

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandra V, Huang P, Potluri N et al (2013) Multidomain integration in the structure of the HNF-4a nuclear receptor complex. Nature 495:394–398. doi:10.1038/nature11966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JH, Banks AS, Estall JL et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456. doi:10.1038/nature09291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egea PF, Mitschler A, Rochel N et al (2000) Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J 19:2592–2601. doi:10.1093/emboj/19.11.2592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egea PF, Rochel N, Birck C et al (2001) Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR. J Mol Biol 307:557–576. doi:10.1006/jmbi.2000.4409

    Article  CAS  PubMed  Google Scholar 

  • Fattori J, Campos JLO, Doratioto TR et al (2014) RXR agonist modulates TR: Corepressor dissociation upon 9-cis retinoic acid treatment. Mol Endocrinol (Baltim Md me20141251). doi:10.1210/me.2014–1251

    Google Scholar 

  • Gaillard E, Bruck N, Brelivet Y et al (2006) Phosphorylation by PKA potentiates retinoic acid receptor alpha activity by means of increasing interaction with and phosphorylation by cyclin H/cdk7. Proc Natl Acad Sci U S A 103:9548–9553. doi:10.1073/pnas.0509717103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gampe RT, Montana VG, Lambert MH et al (2000) Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    CAS  PubMed  Google Scholar 

  • Hsieh JC, Whitfield GK, Oza AK et al (1999) Characterization of unique DNA-binding and transcriptional-activation functions in the carboxyl-terminal extension of the zinc finger region in the human vitamin D receptor. Biochemistry (Mosc) 38:16347–16358

    Article  CAS  Google Scholar 

  • Hua S, Kittler R, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137:1259–1271. doi: 10.1016/j.cell.2009.04.043

    Article  PubMed Central  PubMed  Google Scholar 

  • Huet T, Laverny G, Ciesielski F et al (2015) A vitamin D receptor selectively activated by gemini analogs reveals ligand dependent and independent effects. Cell Rep doi:10.1016/j.celrep.2014.12.045

    Google Scholar 

  • Jakób M, Kołodziejczyk R, Orłowski M et al (2007) Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain. Nucleic Acids Res 35:2705–2718. doi:10.1093/nar/gkm162

    Article  PubMed Central  PubMed  Google Scholar 

  • Maire AL, Teyssier C, Erb C et al (2010) A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 17:801–807. doi:10.1038/nsmb.1855

    Article  PubMed  Google Scholar 

  • Lou X, Toresson G, Benod C et al (2014) Structure of the retinoid X receptor a–liver X receptor b (RXRa–LXRb) heterodimer on DNA. Nat Struct Mol Biol 21:277–281. doi:10.1038/nsmb.2778

    Article  CAS  PubMed  Google Scholar 

  • Luisi BF, Xu WX, Otwinowski Z et al (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505. doi:10.1038/352497a0

    Article  CAS  PubMed  Google Scholar 

  • Mader S, Chen JY, Chen Z et al (1993) The patterns of binding of RAR, RXR and TR homo- and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. EMBO J 12:5029–5041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maletta M, Orlov I, Roblin P et al (2014) The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat Commun doi:10.1038/ncomms5139

    Google Scholar 

  • Meijsing SH, Pufall MA, So AY et al (2009) DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–410. doi:10.1126/science.1164265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moutier E, Ye T, Choukrallah M-A et al (2012) Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem 287:26328–26341. doi:10.1074/jbc.M112.361790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy L, Kao HY, Love JD et al (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209–3216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nahoum V, Pérez E, Germain P et al (2007) Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function. Proc Natl Acad Sci U S A 104:17323–17328. doi:10.1073/pnas.0705356104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orlov I, Rochel N, Moras D, Klaholz BP (2012) Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J 31:291–300. doi:10.1038/emboj.2011.445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osz J, Brélivet Y, Peluso-Iltis C et al (2012) Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci U S A 109:E588–E594. doi:10.1073/pnas.1118192109

    Article  PubMed Central  PubMed  Google Scholar 

  • Osz J, McEwen AG, Poussin-Courmontagne P et al (2015) Structural basis of natural promoter recognition by the retinoid x nuclear receptor. Sci Rep 5:8216. doi:10.1038/srep08216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993) Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev 7:1411–1422

    Article  CAS  PubMed  Google Scholar 

  • Petoukhov MV, Billas IML, Takacs M et al (2013) Reconstruction of quaternary structure from X-ray scattering by equilibrium mixtures of biological macromolecules. Biochemistry (Mosc) 52:6844–6855. doi:10.1021/bi400731u

    Article  CAS  Google Scholar 

  • Pogenberg V, Guichou J-F, Vivat-Hannah V et al (2005) Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem 280:1625–1633. doi:10.1074/jbc.M409302200

    Article  CAS  PubMed  Google Scholar 

  • Putcha B-DK, Wright E, Brunzelle JS, Fernandez EJ (2012) Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers. Proc Natl Acad Sci U S A 109:6084–6087. doi:10.1073/pnas.1119852109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rastinejad F, Perlmann T, Evans RM, Sigler PB (1995) Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375:203–211. doi:10.1038/375203a0

    Article  CAS  PubMed  Google Scholar 

  • Rastinejad F, Wagner T, Zhao Q, Khorasanizadeh S (2000) Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J 19:1045–1054. doi:10.1093/emboj/19.5.1045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rochel N, Ciesielski F, Godet J et al (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570. doi:10.1038/nsmb.2054

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Ramalanjaona N, Huet T et al (2010) The “Phantom Effect” of the Rexinoid LG100754: Structural and functional insights. PLoS One 5:e15119. doi:10.1371/journal.pone.0015119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwabe JW, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements. Cell 75:567–578

    Article  CAS  PubMed  Google Scholar 

  • Shaffer PL, Gewirth DT (2002) Structural basis of VDR-DNA interactions on direct repeat response elements. EMBO J 21:2242–2252. doi:10.1093/emboj/21.9.2242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaffer PL, Gewirth DT (2004) Structural analysis of RXR-VDR interactions on DR3 DNA. J Steroid Biochem Mol Biol 89–90:215–219. doi:10.1016/j.jsbmb.2004.03.084

    Article  PubMed  Google Scholar 

  • Shaffer PL, McDonnell DP, Gewirth DT (2005) Characterization of transcriptional activation and DNA-binding functions in the hinge region of the vitamin D receptor. Biochemistry (Mosc) 44:2678–2685. doi:10.1021/bi0477182

    Article  CAS  Google Scholar 

  • Suino K, Peng L, Reynolds R et al (2004) The nuclear xenobiotic receptor CAR: Structural determinants of constitutive activation and heterodimerization. Mol Cell 16:893–905. doi:10.1016/j.molcel.2004.11.036

    CAS  PubMed  Google Scholar 

  • Svensson S, Ostberg T, Jacobsson M et al (2003) Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J 22:4625–4633. doi:10.1093/emboj/cdg456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takacs M, Petoukhov MV, Atkinson RA et al (2013) The asymmetric binding of PGC-1a to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism. PLoS One 8:e67810. doi:10.1371/journal.pone.0067810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veesler D, Blangy S, Cambillau C, Sciara G (2008) There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization. Acta Crystallograph Sect F Struct Biol Cryst Commun 64:880–885. doi:10.1107/S1744309108028248

    Article  CAS  Google Scholar 

  • Velasco LFR, Togashi M, Walfish PG et al (2007) Thyroid hormone response element organization dictates the composition of active receptor. J Biol Chem 282:12458–12466. doi:10.1074/jbc.M610700200

    Article  CAS  PubMed  Google Scholar 

  • Xu HE, Stanley TB, Montana VG et al (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415:813–817. doi:10.1038/415813a

    Article  CAS  PubMed  Google Scholar 

  • Xu RX, Lambert MH, Wisely BB et al (2004) A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol Cell 16:919–928. doi:10.1016/j.molcel.2004.11.042

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chalmers MJ, Stayrook KR et al (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18:556–563. doi:10.1038/nsmb.2046

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao Q, Chasse SA, Devarakonda S et al (2000) Structural basis of RXR-DNA interactions. J Mol Biol 296:509–520. doi:10.1006/jmbi.1999.3457

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Moras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beinsteiner, B., Moras, D. (2015). Structural Analysis of Heterodimeric Nuclear Receptors. In: McEwan, I., Kumar, R. (eds) Nuclear Receptors: From Structure to the Clinic. Springer, Cham. https://doi.org/10.1007/978-3-319-18729-7_7

Download citation

Publish with us

Policies and ethics