Skip to main content
Log in

Features of the formation of self-fertile euploid lines (2n = 42) by self-pollination of the 46-chromosome barley-wheat BC1 hybrid Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × Triticum aestivum L. (2n = 42)

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We studied some features of the development of self-fertile 42-chromosome lines on the base of self-pollination progeny of 46-chromosome plants obtained by backcrossing of barley-wheat hybrids Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × Triticum aestivum L. (2n = 42). The stabilization of karyotypes, resulting in 42-chromosome plants of the wheat type was generally completed by generation BC1F10. The plants of all self-pollination progenies, including BC1F10, showed some phenotypic traits characteristic of wild barley. Plants of BC1F10 with the chromosome sets 2n = 42 and 2n = 42 + t were analyzed by RAPD with a set of 115 primers. Fragments of the wild barley genome were detected in RAPD patterns with 19 primers. Cross-hybridization confirmed that these fragments belonged to the wild barley genome. We raised four phenotypically different 42-chromosome lines from grains obtained from plants of generation BC1F10, and these lines proved to be cytogenetically stable and self-fertile when grown in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friebe, B., Jiang, J., Raupp, W.J., et al., Characterization of Wheat-Alien Translocations Conferring Resistance to Disease and Pests: Current Status, Euphytica, 1996, vol. 91, pp. 59–87.

    Google Scholar 

  2. Laikova, L.I., Arbuzova, V.S., Efremova, T.T., and Popova, O.M., Construction of Immune Lines with Complex Resistance to Leaf Rust and Poudery Mildew in Common Spring Wheat Cultivar Saratovskaya 29, Russ. J. Genet., 2004, vol. 40, no. 5, pp. 506–509.

    Article  CAS  Google Scholar 

  3. Zhang, H., Reader, S.M., Liu, X., et al., Comparative Genetic Analysis of the Aegilops longissima and Ae. sharonensis Genomes with Common Wheat, Theor. Appl. Genet., 2001, vol. 103, pp. 518–525.

    Article  CAS  Google Scholar 

  4. Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops-Triticum) Group, Plant Cell, 2001, vol. 13, pp. 1735–1747.

    Article  PubMed  CAS  Google Scholar 

  5. Taketa, S., Choda, M., Ohashi, R., et al., Molecular and Physical Mapping of a Barley Gene on Chromosome Arm 1HL that Causes Sterility in Hybrids with Wheat, Genome, 2002, vol. 45, pp. 617–625.

    Article  PubMed  CAS  Google Scholar 

  6. Kitagawa, K., Takumi, S., and Nakamura, C., Evidence of Parental Transmission of Mitochondrial DNA in a Nucleus-Cytoplasm Hybrid of timopheevii Wheat, Genes Genet. Syst., 2002, vol. 77, pp. 243–250.

    Article  PubMed  CAS  Google Scholar 

  7. Aksyonova, E., Sinyavskaya, M., Danilenko, N., et al., Heteroplasmy and Paternally Oriented Shift of the Organellar DNA Composition in Barley-Wheat Hybrids During Backcrosses with Wheat Parents, Genome, 2005, vol. 48, no. 5, pp. 761–769.

    PubMed  CAS  Google Scholar 

  8. Taketa, S., Awayama, T., Ichii, M., et al., Molecular Cytogenetic Identification of Nullisomy 5B Induced Homologous Recombination between Wheat Chromosome 5D and Barley Chromosome 5H, Genome, 2004, vol. 48, pp. 115–124.

    Article  Google Scholar 

  9. Bothmer, R., Jacobsen, N., Jorgensen, R., and Linde-Laursen, I., An Ecogeographical Study of the Genus Hordeum, Systematic and Ecogeographic Studies on Crop Genopools, Rome: IBPG, 1991.

    Google Scholar 

  10. Hernandez P., Rubio M.J., Martin A., Development of RAPD Markers in Tritordeum and Addition Lines of Hordeum chilense in Triticum aestivum, Plant Breeding, 1996, vol. 115, pp. 52–56.

    Article  CAS  Google Scholar 

  11. Alvarez, J.B., Ballesteros, J., Sillero, J.A., and Martin, L.M., Tritordeum: A New Crop of Potential Importance in the Food Industry, Hereditas, 1992, vol. 116, pp. 193–197.

    Google Scholar 

  12. Kobylyanskii, V.D., Biologic Features of Wild Barley Species in Terms of Breeding, Biol. Zh. Armenia, 1967, vol. 20, no. 10, pp. 41–51.

    Google Scholar 

  13. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., Fertility in Barley × Wheat Hybrids H. geniculatum All. × T. aestivum L., Their Regenerants and Hybrid Progeny of Backcrosses to T. aestivum L., Cereal Res. Commun., 1988, vol. 16, nos. 3–4, pp. 157–163.

    Google Scholar 

  14. Islam, A.K.M.R., Coordinator’s Report: Wheat-Barley Genetic Stocks, Barley Genet. Newslett., 2002, vol. 32, p. 178.

    Google Scholar 

  15. Pendinen, G.I., Alpat’eva, N.V., Chernov, V.E., and Anisimova, I.N., Change of the Expression Pattern of the Genes, Controlling the Synthesis of Seed Storage Proteins during the Processes of the Amphiploid T. aestivum (6x) × H. marinum (2x) Stabilization, Otdalennaya gibridizatsiya. Sovremennoe sostoyanie i perspektivy razvitiya (Distant Hybridization: Current State and Perspectives of Development), Proc. Int. Conf. on Distant Hybridization, Moscow: MSKhA, 2003, pp. 191–195.

    Google Scholar 

  16. Pershina, L.A., Numerova, O.M., Belova, L.I., et al., Expression of Fertility during Morphogenesis in Self-Pollinated Backcrossed Progenies of Barley-Wheat Amphiploids [H. geniculatum All. (2n = 28) × T. aestivum L. (2n = 42)] (2n = 70), Russ. J. Genet., 2004, vol. 40, no. 5, pp. 510–514.

    Article  CAS  Google Scholar 

  17. Pershina, L.A., Numerova, O.M., Belova, L.I., and Devyatkina, E.P., Biotechnological and Cytogenetic Aspects of Producing New Wheat Genotypes Using Hybrids, Euphytica, 1998, vol. 100, nos. 1–3, pp. 239–244.

    Article  Google Scholar 

  18. Trubacheeva, N.V., Salina, Ė.A., Numerova, O.M., and Pershina, L.A., RARD-Based Analysis of Barley Genetic Material in the Genome of Alloplasmic Wheat Lines (H. geniculatum All./T. aestivum L.), Russ. J. Genet., 2003, vol. 39, no. 6, pp. 656–660.

    Article  Google Scholar 

  19. Numerova O.M., Pershina L.A., and Salina E.A., Genomic in Situ Hybridization of Self-Fertile Alloplasmic Lines: Backcross Progenies of Barley-Wheat Hybrids H. geniculatum All. × T. aestivum L., Abstr. Int. Conf. Molecular Mechanisms of Genetic Processes and Biotechnology, Moscow, November 18–21; Minsk, November 22–24, 2001, pp. 107–108.

  20. Numerova, O.M., Pershina, L.A., Salina, E.A., and Shumnyi, V.K., Barley Chromosome Identification Using Genomic in Situ Hybridization in the Genome of Backcrossed Progeny of Barley-Wheat Amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70), Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1007–1010.

    Article  CAS  Google Scholar 

  21. Lakin, G.F., Biometriya (Biometry), Moscow: Vyssh. Shkola, 1980.

    Google Scholar 

  22. Ausubel, M.L., Brent, R.E., Kingston, R.E., et al., Current Protocols in Molecular Biology, New York: Wiley Interscience, 1987.

    Google Scholar 

  23. Williams, J.G.K., Kubelik, A.R., Livak, K.J., and Rafalski, J.A., DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic Markers, Nucl. Acids Res., 1990, vol. 25, pp. 6531–6535.

    Google Scholar 

  24. Trubacheeva, N.V., Salina, E.A., and Pershina, L.A., Study of Mitochondrial Genomes of Alloplasmic Recombinant Lines Constructed on the Basis of Barley-Wheat Hybrids H. geniculatum All. (= H. marinum subsp. gussoneanum) (2n = 28) × T. aestivum L. (2n = 42), by Means of RFLR-and PCR-Analysis, Russ. J. Genet., 2005, vol. 41, no. 3, pp. 269–274.

    Article  CAS  Google Scholar 

  25. Bildanova, L.L., Badaeva, E.D., Pershina, L.A., and Salina, E.A., Molecular Study and C-Banding of Chromosomes in Common Wheat Alloplasmic Lines Obtained from the Backcross Progeny of Barley-Wheat Hybrids Hordeum vulgare L. (2n = 14) × Tritisum aestivum L. (2n = 42) and Differing in Fertility, Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1383–1391.

    Article  CAS  Google Scholar 

  26. Badaeva, E.D., Pershina, L.A., and Bildanova, L.L., Cytogenetic Analysis of Alloplasmic Recombinant Lines (H. vulgare)—T. aestivum Unstable in Fertility and Viability, Russ. J. Genet., 2006, vol. 42, no. 2, pp. 140–149.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.A. Pershina, N.V. Trubacheeva, T.S. Rakovtseva, L.I. Belova, E.P. Devyatkina, L.A. Kravtsova, 2006, published in Genetika, 2006, Vol. 42, No. 12, pp. 1683–1690.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pershina, L.A., Trubacheeva, N.V., Rakovtseva, T.S. et al. Features of the formation of self-fertile euploid lines (2n = 42) by self-pollination of the 46-chromosome barley-wheat BC1 hybrid Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × Triticum aestivum L. (2n = 42). Russ J Genet 42, 1422–1427 (2006). https://doi.org/10.1134/S102279540612009X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279540612009X

Keywords

Navigation