Skip to main content
Log in

Identification of industrial strains of lactic acid bacteria by methods of molecular genetic typing

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Various methods currently used in microbiology for determining taxonomic state of bacteria are discussed. The main focus is aimed at identifying and gene typing of lactic acid bacteria, used as starter cultures for industrial process of production of sour milk products, meat products, and probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colwell, R.R., Polyphasic Taxonomy of the Genus Vibrio: Numerical Taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and Related Vibrio Species, J. Bacteriol., 1970, vol. 104, pp. 410–433.

    PubMed  CAS  Google Scholar 

  2. Murrey, R.G.E., Brenner, D.J., Colwell, R.R., et al., Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria, Int. J. Syst. Bacteriol., 1990, vol. 40, pp. 213–215.

    Google Scholar 

  3. Vandamme, P., Pot, B., Gilis, M., et al., Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics, Microbiol. Rev., 1996, vol. 60, pp. 407–438.

    PubMed  CAS  Google Scholar 

  4. Goodfellow, M. and Minnikin, D.E, Introduction to Chemosystematics, Chemical Methods in Bacterial Systematics, Goodfellow, M. and Minnikin, D.E., Eds., London: Academic, 1985, pp. 1–16.

    Google Scholar 

  5. Bergey’s Manual of Systematic Bacteriology, Krieg, N.R. and Holt, J.G., Eds., Baltimore: Williams and Wilkins, 1984, vol. 2.

    Google Scholar 

  6. Facklam, R., Hollis, D., and Collins, M.D., Identification of Gram-Positive Coccal and Cocobacillary Vancomicin-Resistant Bacteria, J. Clin. Microbiol., 1989, vol. 27, no. 4, pp. 724–730.

    PubMed  CAS  Google Scholar 

  7. Jones, D., Comparison and Differentiation of Genus Streptococcus, Streptococci, Skinner, F.A. and Quesnel, L.G., Eds., London: Academic, 1978, pp. 1–49.

    Google Scholar 

  8. Bridge, P.D. and Sheath, P.H.A., Numerical Taxonomy of Streptococcus, J. Gen. Microbiol., 1983, vol. 129, pp. 565–579.

    PubMed  CAS  Google Scholar 

  9. Ludwig, W., Seewaldt, E., Kilpper-Balz, R., et al., The Phylogenic Position of Streptococcus and Enterococcus, J. Gen. Microbiol., 1985, vol. 131, pp. 543–551.

    PubMed  CAS  Google Scholar 

  10. Schleifer, K.H. and Kilpper-Balz, R., Molecular and Chemotaxonomic Approaches to the Classification of Streptococci, Enterococci and Lactococci: A Review, Syst. Appl. Microbiol., 1987, vol. 10, pp. 1–19.

    CAS  Google Scholar 

  11. Ottogalli, G., Galli, A., and Dellagllio, F., Taxonomic Relations between Streptococcus thermophilus and Some Other Streptococci, J. Dairy Res., 1979, vol. 46, pp. 127–131.

    Google Scholar 

  12. Garvie, E.I. and Farrow, J.A.E., Sub-Divisions within the Genus Streptococcus Using Deoxyribonucleic Acid/Ribosomal Ribonucleic Acid Hybridization, Zbl. Bakt. Hyg. I. Abt. Orig. C2, 1981, pp. 299–310.

  13. Bergey’s Manual of Systematic Bacteriology, Krieg, N.R. and Holt, J.G., Eds., Baltimore: Williams and Wilkins, 1984, pp. 8–11.

    Google Scholar 

  14. Farrow, J.A.E. and Collins, M.D., DNA Base Composition, DNA-DNA Homology and Long-Chain Fatty Acid Studies on Streptococcus thermophilus and Streptococcus salivarius, J. Gen. Microbiol., 1984, vol. 130, pp. 357–362.

    PubMed  CAS  Google Scholar 

  15. Whilei, R.A. and Hardie, J.M., Streptococcus vestibularis sp. nov. from the Human Oral Cavity, Int. J. Syst. Bact, 1988, vol. 38, no. 4, pp. 335–339.

    Google Scholar 

  16. Lysenko, A.M., Botina, S.G., and Sukhodolets, V.V., Confirmation of the Taxonomic Position of Streptococcus salivarius, Mikrobiologiya, 2002, vol. 71, no. 5, pp. 713–716.

    CAS  Google Scholar 

  17. Gagnaire, V., Piot, M., Camier, B., et al., Survey of Bacterial Proteins Released in Cheese: A Proteomic Approach, Int. J. Food Microbiol., 2004, vol. 94, pp. 185–201.

    Article  PubMed  CAS  Google Scholar 

  18. Eaton, T.J. and Gasson, M.J., Molecular Screening of Enterococcus virulens Determinants and Potential for Genetic Exchange between Food and Medical Isolates, Appl. Env. Microbiol., 2001, vol. 67, pp. 1628–1635.

    Article  CAS  Google Scholar 

  19. Schleifer, K.H. and Kilpper-Balz, R., Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nov. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov., Int. J. Syst. Bact., 1984, vol. 34, pp. 31–34.

    Google Scholar 

  20. Sherman, J.M. and Wing, H.U., Streptococcus durans nov. sp., J. Dairy Sci., 1937, vol. 20, pp. 165–167.

    Article  Google Scholar 

  21. Collins, M.D., Jones, D., Farrow, J.A.E., et al., Enterococcus avium nov. rev., comb. nov.; E. casseliflavus nov. rev., comb. nov.; E. durans nov. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov., Int. J. Syst. Bacteriol., 1984, vol. 34, pp. 220–223.

    Google Scholar 

  22. Stepanenko, P.P., Mikrobiologiya moloka i molochnykh produktov (Microbiology of Milk and Milk Products), Sergiev Posad: Vse dlya Vas—Podmoskov’e, 1999.

    Google Scholar 

  23. Botina, S.G., Lobanov, A.O., Lysenko, A.M., and Sukhodolets, V.V., Genetic Diversity of Thermophilic Lactic Acid Bacteria Strains on the Territory of CIS, Biotekhnologiya, 2004, vol. 2, pp. 3–12.

    Google Scholar 

  24. Fertally, S.S. and Facklam, R., Comparison of Physiologic Tests Used to Identify Non-Beta-Hemolytic Aerococci, Enterococci, and Streptococci, J. Clin. Microbiol., 1987, vol. 25, pp. 1845–1850.

    PubMed  CAS  Google Scholar 

  25. Teixeira, L.M., Facklam, R.R., Steigerwalt, A.G., et al., Correlation between Phenotypic Characteristics and DNA Relatedness within Enterococcus faecium Strains, J. Clin. Microbiol., 1995, vol. 33, no. 6, pp. 1520–1523.

    PubMed  CAS  Google Scholar 

  26. Vancanneyt, M., Snauwaert, C., Cleenwerck, I., et al., Enterococcus villorum sp. nov., an Enteroadherent Bacterium Associated with Diarrhea in Piglets, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 393–400.

    PubMed  CAS  Google Scholar 

  27. Andrighetto, C., De Dea, P., and Lombardi, A., Molecular Identification and Cluster Analysis of Homofermentative Thermophilic Lactobacilli Isolated from Dairy Products, Res. Microbiol., 1998, vol. 149, no. 9, pp. 631–643.

    Article  PubMed  CAS  Google Scholar 

  28. Dellaglio, F., Felis, G.E., Castioni, A., et al., Lactobacillus delbrueckii subsp. indicus subsp. nov., Isolated from Indian Dairy Products, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 401–404.

    Article  PubMed  CAS  Google Scholar 

  29. Giraffa, G., Andrighetto, C., Antonello C., et al. Genotypic and Phenotypic Diversity of Lactobacillus delbrueckii subsp. lactis Strains of Dairy Origin, Int. J. Food Microbiol., 2004, vol. 91, pp. 129–139.

    Article  PubMed  CAS  Google Scholar 

  30. Langa, S., Fernandez, A., Martin, R., et al., Differentiation of Enterococcus faecium from Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus Strains by PCR and Dot-Blot Hybridization, Int. J. Food Microbiol., 2003, vol. 88, pp. 197–200.

    Article  PubMed  CAS  Google Scholar 

  31. Callon, C., Millet, L., and Montel, M.C., Diversity of Lactic Acid Bacteria Isolated from AOC Salers Cheese, J. Dairy Res., 2004, vol. 71, pp. 231–244.

    Article  PubMed  CAS  Google Scholar 

  32. Stackebrandt, E. and Goebel, B.M., Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Definition in Bacteriology, Int. J. Syst. Bacteriol., 1994, vol. 44, pp. 846–849.

    CAS  Google Scholar 

  33. Bergey’s Manual of Systematic Bacteriology, Sneath, P.H.A., et al., Eds., Baltimore: Williams and Wilkins, 1986, vol. 2.

    Google Scholar 

  34. Kilpper-Balz, R., Fischer, G., and Schleifer, K.H., Nucleic Acid Hybridization of Group N and Group D Streptococci, Curr. Microbiol., 1982, vol. 7, pp. 245–250.

    Article  Google Scholar 

  35. Wayne, L.G., Brenner, D.J., Collwel, R.R., et al., Report of the Ad Hoc Committee on Approaches to Bacterial Systematics, Int. J. Syst. Bacteriol., 1987, vol. 37, pp. 463–464.

    Google Scholar 

  36. De Ley, J., Modern Molecular Methods in Bacterial Taxonomy: Evolution, Application, Prospects, Proc. 4th Int. Conf. Plant Pathogenic Bacteria, Gilbert-Clarey Tours., 1978, vol. 1.

  37. Grimont, P.A.D., Use of DNA Reassociation in Bacterial Classification, Can. J. Microbiol., 1988, vol. 34, pp. 541–546.

    Article  PubMed  CAS  Google Scholar 

  38. Rossello-Mora, R. and Amann, R., The Species Concept for Prokaryotes, FEMS Microbiol. Rev., 2001, vol. 25, pp. 39–67.

    Article  PubMed  CAS  Google Scholar 

  39. Turova, T.P., The Use of DNA-DNA Hybridization Data and Analysis of 16S rRNA Genes for Solution of Taxonomic Problems, as Exemplified by Haloanaerobiales, Mikrobiologiya, 2000, vol. 69, no. 6, pp. 741–752.

    CAS  Google Scholar 

  40. Godon, J.-J., Chopin, M.-C., and Erlich, S.D., Branched-Chain Amino Acid Biosynthesis Genes in Lactococcus lactis subsp. lactis, J. Bacteriol., 1992, vol. 174, pp. 6580–6589.

    PubMed  CAS  Google Scholar 

  41. Cai, Y., Matsumoto, M., and Benno, Y., Bifidobacterium lactis Meile et al. 1997 is a Subjective Synonym of Bifidobacterium animalis (Mitsuoka, 1969) Scardovi and Trovatelli, 1974, Microbiol. Immunol., 2000, vol. 44, pp. 815–820.

    PubMed  CAS  Google Scholar 

  42. De Graef, E.M., Devriese, L.A., Vancanneyt, M., et al., Description of Enterococcus canis sp. nov. from Dogs and Reclassification of Enterococcus porcinus Teixeira et al., 2001 as a Junior Synonym of Enterococcus villorum Vancanneyt et al., 2001, Int. J. Syst. Evol. Microbiol, 2003, vol. 53, pp. 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  43. Yoon, J.H., Kang, S.S., Cho, Y.G., et al., Rhodococcus pyridinivorans sp. nov., a Pyridine-Degrading Bacterium, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 2173–2180.

    PubMed  CAS  Google Scholar 

  44. Bjorkroth, K.J., Geisen, R., Schillinger, U., et al., Characterization of Leuconostoc gasicomitatum sp. nov., Associated with Spoiled Raw Tomato-Marinated Broiler Meat Strips Packaged under Modified-Atmosphere Conditions, Appl. Env. Microbiol., 2000, vol. 66, no. 9, pp. 3764–3772.

    Article  CAS  Google Scholar 

  45. Leisner, J.J., Vancanneyt, M., Goris, J., et al., Description of Paralactobacillus selangorensis gen. nov., sp. nov., a New Lactic Acid Bacterium Isolated from Chili Bo, a Malaysian Food Ingredient, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 19–24.

    PubMed  CAS  Google Scholar 

  46. Sukhodolets, V.V., Botina, S.G., Lysenko, A.M., and Trenina, M.A., Lactic Acid Enterococci Enterococcus faesium and Enterococcus durans: Nucleotide Sequence Diversity of 16S rRNA Genes, Mikrobiologiya, 2005, vol. 74, no. 6, pp. 810–815.

    CAS  Google Scholar 

  47. Ursing, J.B., Rossello-Mora, R.A., Garcia-Valdes, E., and Lalucat, J., Taxonomic Note: A Pragmatic Approach to the Nomenclature of Phenotypically Similar Genomic Groups, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 604–610.

    Google Scholar 

  48. Lysenko, A.M., Botina, S.G., Ganina, V.I., and Sukhodolets, V.V., Divergence of the DNA Hybridization Level and Sibling Species Formation among Lactic Acid Bacteria Streptococcus thermophilus, Mikrobiologiya, 2001, vol. 70, no. 1, pp. 70–76.

    CAS  Google Scholar 

  49. Botina, S.G., Lysenko, A.M., and Sukhodolets, V.V., Taxonomic Position of Russian Strains of Termophilic Lactic Acid Bacteria Inferred from 16S rRNA Genes Sequencing, Mikrobiologiya, 2005, vol. 74, no. 4, pp. 520–525.

    CAS  Google Scholar 

  50. Tenover, F.C., Arbeit, R.D., Goering, R.V., et al., Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Electrophoresis: Criteria for Bacterial Strain Typing, J. Clin. Microbiol., 1995, vol. 33, pp. 2233–2239.

    PubMed  CAS  Google Scholar 

  51. Gordillo, M.E., Singh, K.V., Baker, C.J., and Murrey, B.E., Typing of Group B Streptococci: Comparison of Pulsed-Field Electrophoresis and Conventional Electrophoresis, J. Clin. Microbiol., 1993, vol. 31, pp. 1430–1434.

    PubMed  CAS  Google Scholar 

  52. Boutrou, R., Thuault, D., and Bourgeois, C.M., Identification and Characterization of Streptococcus thermophilus Strains by Pulsed-Field Gel Electrophoresis, J. Appl. Bacteriol., 1995, vol. 79, pp. 454–458.

    CAS  Google Scholar 

  53. Roussel, Y., Bourgoin, F., Guedon, G., et al., Analysis of the Genetic Polymorphism between Three Streptococcus thermophilus Strains by Comparing their Physical and Genetic Organization, Microbiol., 1997, vol. 143, pp. 1335–1343.

    Article  CAS  Google Scholar 

  54. O’sullivan, T.F. and Fitzgerald, G.F., Comparison of Streptococcus thermophilus Strains by Pulse Field Gel Electrophoresis of Genomic DNA, FEMS Microbiol. Lett., 1998, vol. 168, pp. 213–219.

    Article  PubMed  CAS  Google Scholar 

  55. O’sullivan, T. and Daly, C., Plasmid DNA in Leuconostoc Species, Irish J. Food Sci. Technol., 1982, vol. 6, no. 2, p. 206.

    Google Scholar 

  56. MacKay, L.L., Functional Properties of Plasmids in Lactic Streptococci, Antonie van Leeuwenhoec., 1983, vol. 49, pp.259–274.

    Article  Google Scholar 

  57. Anderson, D.G. and McKay, L.L., Simple and Rapid Method for Isolating Large Plasmid DNA from Lactic Streptococci, Appl. Env. Microbiol., 1983, vol. 46, pp. 549–552.

    CAS  Google Scholar 

  58. Fujita, Y., Okamoto, T., and Irie, R., Plasmid Distribution in Lactic Streptococci, Agric. Biol. Chem., 1984, vol. 48, no. 7, pp. 1885–1898.

    Google Scholar 

  59. O’sullivan, D.J. and Klaenhammer, T.R., Rapid Mini-Prep Isolation of High-Quality Plasmid DNA from Lactococcus and Lactobacillus spp., Appl. Env. Microbiol., 1993, vol. 59, no. 8, pp. 2730–2733.

    CAS  Google Scholar 

  60. Roussel, Y., Colmin, C., Simonet, J.M., and Decaris, B., Strain Characterization, Genome Size and Plasmid Content in the Lactobacillus acidophilus Group (Hansen and Mocquot), J. Appl. Bacteriol., 1993, vol. 74, no. 5, pp. 549–556.

    PubMed  CAS  Google Scholar 

  61. Gonzalez, C.F. and Kunka, B.S., Transfer of Sucrose-Fermenting Ability and Nisin Production Phenotype Among Lactic Streptococci, Appl. Env. Microbiol., 1985, vol. 49, pp. 627–633.

    CAS  Google Scholar 

  62. Turgeon, N., Frenette, M., and Moineau, S., Characterization of a Theta-Replicating Plasmid from Streptococcus thermophilus, Plasmid, 2004, vol. 51, no. 1, pp. 24–36.

    Article  PubMed  CAS  Google Scholar 

  63. Mercenier, A., Molecular Genetics of Streptococcus thermophilus, FEMS Microbiol. Rev., 1990, vol. 7, pp. 61–77.

    PubMed  CAS  Google Scholar 

  64. Turgeon, N. and Moineau, S., Isolation and Characterization of a Streptococcus thermophilus Plasmid Closely Related to the PMV158 Family, Plasmid, 2001, vol. 45, no. 3, pp. 171–183.

    Article  PubMed  CAS  Google Scholar 

  65. Botina, S.G., Lysenko, A.M., Sukhodolets, V.V., and Trenina, M.A., Genome Comparison in Lactic Acid Bacteria Streptococcus thermophilus Strains of Different Origin, Mikrobiologiya, 2002, vol. 71, no. 6, pp. 819–823.

    CAS  Google Scholar 

  66. Tomita, H., Tanimoto, K., Hayakawa, S., et al., Highly Conjugative pMG1-Like Plasmids Carrying Tn1546-Like Transposons that Encode Vancomycin Resistance in Enterococcus faecium, J. Bacteriol., 2003, vol. 185, no. 23, pp. 7024–7028.

    Article  PubMed  CAS  Google Scholar 

  67. Tomita, H., Fujimoto, S., Manimoto, K., and Ike, Y., Cloning and Genetic and Sequence Analyses of the Bacteriocin 21 Determinant Encoded on the Enterococcus faecalis Pheromone-Responsive Conjugative Plasmid pPD1, J. Bacteriol., 1997, vol. 179, pp. 7843–7855.

    PubMed  CAS  Google Scholar 

  68. Flannagan, S.E., Chow, J.W., Donabedian, S.M., et al., Plasmid Content of a Vancomycin-Resistant Enterococcus faecalis Isolate from a Patient Also Colonized by Staphylococcus aureus with a VanA Phenotype, Antimicrob. Agents. Chemother., 2003, vol. 47, no. 12, pp. 3954–3959.

    Article  PubMed  CAS  Google Scholar 

  69. Teuber, M., Schwarz, F., and Perreten, V., Molecular Structure and Evolution of the Conjugative Multiresistance Plasmid PRE25 of Enterococcus faecalis Isolated from a Raw-Fermented Sausage, Int. J. Food Microbiol., 2003, vol. 88, nos. 2–3, pp. 325–329.

    Article  PubMed  CAS  Google Scholar 

  70. Le Bourgeois, P., Mata, M., and Ritzenthaler, P., Genome Comparison of Lactococcus Strains by Pulsed-Field Gel Electrophoresis, FEMS Microbiol. Lett., 1989, vol. 50, nos. 1–2, pp. 65–69.

    Article  PubMed  Google Scholar 

  71. Le Bourgeois, P., Lautier, M., and Ritzenthaler, P., Chromosome Mapping in Lactic Acid Bacteria, FEMS Microbiol. Rev., 1993, vol. 12, nos. 1–3, pp. 109–123.

    Article  PubMed  Google Scholar 

  72. Roussel, Y., Pebay, M., Guedon, G., et al., Physical and Genetic Map of Streptococcus thermophilus A054, J. Bacteriol., 1994, vol. 176, no. 24, pp. 7413–7422.

    PubMed  CAS  Google Scholar 

  73. Chevallier, B., Hubert, J.C., and Kammerer, B., Determination of Chromosome Size and Number of rrn Loci in Lactobacillus plantarum by Pulsed-Field Gel Electrophoresis, FEMS Microbiol. Lett., 1994, vol. 120, nos. 1–2, pp. 51–56.

    Article  PubMed  CAS  Google Scholar 

  74. Tenreiro, R., Santos, M.A., Paveia, H., and Vieira, G., Inter-Strain Relationships Among Wine Leuconostocs and Their Divergence from Other Leuconostoc Species, as Revealed by Low Frequency Restriction Fragment Analysis of Genomic DNA, J. Appl. Bacteriol., 1994, vol. 77, no. 3, pp. 271–280.

    PubMed  CAS  Google Scholar 

  75. Gelsomino, R., Vancanneyt, M., Cogan, T.M., et al., Source of Enterococci in a Farmhouse Raw-Milk Cheese, Appl. Env. Microbiol., 2002, vol. 68, no. 7, pp. 3560–3565.

    Article  CAS  Google Scholar 

  76. Donabedian, S., Chow, J.W., Shlaes, D.M., et al., DNA Hybridization and Contour-Clamped Homogeneous Electric Field Electrophoresis for Identification of Enterococci to the Species Level, J. Clin. Microbiol., 1995, vol. 33, pp. 141–145.

    PubMed  CAS  Google Scholar 

  77. Duck, W.M., Steward, C.D., Banerjee, S.N., et al., Optimization of Computer Software Settings Improves Accuracy of Pulsed-Field Gel Electrophoresis Macrorestriction Fragment Pattern Analysis, Clin. Microbiol., 2003, vol. 41, pp. 3035–3042.

    Article  CAS  Google Scholar 

  78. Welsh, J. and McClelland, M., Fingerprinting Genomes Using PCR with Arbitrary Primers, Nucl. Acids Res., 1990, vol. 18, pp. 7213–7218.

    PubMed  CAS  Google Scholar 

  79. Williams, J.G.K., Kubelic, A.R., Lovak, K.J., et al., DNA Polymorphism Amplified by Arbitrary Primers are Useful as Genetic Markers, Nucl. Acids Res., 1990, vol. 18, pp. 6531–6535.

    PubMed  CAS  Google Scholar 

  80. Lupski, J.R. and Weinstock, S., Short, Interspersed Repetitive DNA Sequences in Prokaryotic Genome, J. Bacteriol., 1992, vol. 174, pp. 4525–4529.

    PubMed  CAS  Google Scholar 

  81. Dutka-Malen, S., Evers, S., and Courvalin, P., Detection of Glycopeptide Resistance Genotypes and Identification to the Species Level of Clinically Relevant Enterococci by PCR, J. Clin. Microbiol., 1995, vol. 33, pp. 24–27.

    PubMed  CAS  Google Scholar 

  82. Aymerich, T., Martin, B., Garriga, M., and Hugas, M., Microbial Quality and Direct PCR Identification of Lactic Acid Bacteria and Nonpathogenic Staphylococci from Artisanal Low-Acid Sausages, Appl. Env. Microbiol., 2003, vol. 69, no. 8, pp. 4583–4594.

    Article  CAS  Google Scholar 

  83. Giraffa, G., Paris, A., Valcavi, L., et al., Genotypic and Phenotypic Heterogeneity of Streptococcus thermophilus Strains Isolated from Dairy Products, J. Appl. Microbiol., 2001, vol. 91, pp. 937–943.

    Article  PubMed  CAS  Google Scholar 

  84. Rossetti, L. and Giraffa, G., Rapid Identification of Dairy Lactic Acid Bacteria by M13-Generated, RAPD-PCR Fingerprint Databases, J. Microbiol. Methods, 2005, vol. 63, no. 2, pp. 135–144.

    Article  PubMed  CAS  Google Scholar 

  85. Giraffa G. and Rossetti L., Monitoring of the Bacterial Composition of Dairy Starter Cultures by RAPD-PCR, FEMS Microbiol. Lett., 2004, vol. 237, no. 1, pp. 133–138.

    Article  PubMed  CAS  Google Scholar 

  86. Klein, G., Pack, A., Bonaparte, C., and Reuter, G., Taxonomy and Physiology of Probiotic Lactic Acid Bacteria, Int. J. Food Microbiol., 1988, vol. 41, pp. 103–125.

    Article  Google Scholar 

  87. Giraffa, G. and Neviani, E., Molecular Identification and Characterization of Food-Associated Lactobacilli, Ital. J. Food Sci., 2000, vol. 12, pp. 403–423.

    CAS  Google Scholar 

  88. Torriani, S., Zaparolli, G., and Dellaglio, F., Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus delbrueckii ssp. lactis, Appl. Env. Microbiol., 1999, vol. 65, pp. 4351–4356.

    CAS  Google Scholar 

  89. Mora, D., Fortina, M.G., Parini, C., et al., Genetic Diversity and Technological Properties of Streptococcus thermophilus Strains Isolated from Dairy Products, J. Appl. Microbiol., 2002, vol. 93, pp. 278–287.

    Article  PubMed  CAS  Google Scholar 

  90. Cocolin, L., Rantsiou, K., Iacumin, L., et al., Study of Ecology of Fresh Sausages and Characterization of Populations of Lactic Acid Bacteria by Molecular Methods, Appl. Env. Microbiol., 2004, vol. 70, pp. 1883–1894.

    Article  CAS  Google Scholar 

  91. Jang, J., Kim, B., Lee, J., and Han, H., A Rapid Method for Identification of Typical Leuconostoc Species by 16S rDNA PCR-RFLP Analysis, J. Microbiol. Methods, 2003, vol. 55, no. 1, pp. 295–302.

    Article  PubMed  CAS  Google Scholar 

  92. Mohn, S.C., Ulvik, A., Jureen, R., et al., Duplex Real-Time PCR Assay for Rapid Detection of Ampicillin-Resistant Enterococcus faecium, Antimicrob. Agents. Chemother, 2004, vol. 48, pp. 556–560.

    Article  PubMed  CAS  Google Scholar 

  93. Mac, K., Wichmann-Schauer, H., Peters, J., and Ellerbroek, L., Species Identification and Detection of Vancomycin Resistance Genes in Enterococci of Animal Origin by Multiplex PCR, Int. J. Food Microbiol., 2003, vol. 88, nos. 2–3, pp. 305–309.

    Article  PubMed  CAS  Google Scholar 

  94. Botina, S.G. and Sukhodolets, V.V., Russian Enterococci Strains Used for Fermenting Do not Contain Virulent Genes Usually Present in Pathogenic Strains of Enterococcus faecalis, Biotekhnologiya, 2005, no. 2, pp. 33–37.

  95. Giraffa, G., Enterococci from Foods, FEMS Microb. Rev., 2002, vol. 26, pp. 163–171.

    Article  CAS  Google Scholar 

  96. Bellomo, G., Mangiagle, A., Nicastro, L., and Frigerio, L., A Controlled Double-Blind Study of SF68 Strain as a New Biological Preparation for the Treatment of Diarrhea in Paediatrics, Curr. Ther. Res., 1980, vol. 28, pp. 927–934.

    Google Scholar 

  97. Giraffa, G., Carminati, D., and Neviani, E., Enterococci Isolated from Dairy Products: A Review of Risks and Potential Technological Use, J. Food Prot., 1997, vol. 60, pp. 732–738.

    Google Scholar 

  98. Gutell, R.R., Larsen, N., and Woese, C.R., Lesson from Evolving rRNA: 16S and 13S rRNA Structures from a Comparative Perspective, Microbiol. Rev., 1994, vol. 58, pp. 10–26.

    PubMed  CAS  Google Scholar 

  99. Olsen, G.J., Larsen, G., and Woese, C.R., The Ribosomal RNA Database Project, Nucleic Acids Res., 1991, vol. 19, pp. 2017–2021.

    PubMed  CAS  Google Scholar 

  100. Goodfellow, M. and O’Donnell, A.G., Handbook of New Bacterial Systematics, Goodfellow, M. and O’Donnell, A.G., Eds., London: Academic, 1993, pp. 3–54.

    Google Scholar 

  101. Nechaeva, A.A. and Sukhodolets, V.V., Genetic Study of Industrial Strains of Lactococcus lactis: Identification of Transmissible Plasmids with Respect to the Lactose Fermentation Trait, Rus. J. Genet., 1996, vol. 32, no. 2, pp. 190–198.

    CAS  Google Scholar 

  102. Amann, R. and Ludwig, W., Ribosomal RNA-Targeted Nucleic Acid Probes for Studies in Microbial Ecology, FEMS Microbiol. Rev., 2000, vol. 24, pp. 555–565.

    Article  PubMed  CAS  Google Scholar 

  103. Amann, R., Glocker, F.-O., and Neef, A., Modern Methods in Subsurface Microbiology: In Situ Identification of Microorganisms with Nucleic Acid Probes, FEMS Microbiol. Rev., 1997, vol. 20, pp. 191–200.

    Article  CAS  Google Scholar 

  104. Ludwig, W. and Schleifer, K.-H., Phylogeny of Bacteria Beyond the 16S rRNA Standard, ASM News, 1999, vol. 65, pp. 752–757.

    Google Scholar 

  105. Maidak, B.L., Cole, J.R., Lilburn, T.G., et al., The RDP (Ribosomal Database Project) Continues, Nucleic Acids Res., 2000, vol. 28, pp. 173–174.

    Article  PubMed  CAS  Google Scholar 

  106. Ogier, J.C., Son, O., Gruss, A., et al., Identification of the Bacterial Microflora in Dairy Products by Temporal Temperature Gradient Gel Electrophoresis, Appl. Environ. Microbiol., 2002, vol. 68, pp. 3691–3701.

    Article  PubMed  CAS  Google Scholar 

  107. Martinez-Murcia, A.J. and Collins, M.D., A Phylogenetic Analysis of the Genus Leuconostoc Based on Reverse Transcriptase Sequencing of 16S rRNA, FEMS Microbiol. Lett., 1990, vol. 58, no. 1, pp. 73–83.

    Article  PubMed  CAS  Google Scholar 

  108. Rodrigues, U. and Collins, M.D., Phylogenetic Analysis of Streptococcus saccharolyticus Based on 16S rRNA Sequencing, FEMS Microbiol. Lett., 1990, vol. 59, pp. 231–234.

    Article  PubMed  CAS  Google Scholar 

  109. Collins, M.D., Ash, C., Farrow, J.A., et al., 16S Ribosomal Ribonucleic Acid Sequence Analyses of Lactococci and Related Taxa. Description of Vagococcus fluvialis gen. nov., sp. nov, J. Appl. Bacteriol., 1989, vol. 67, pp. 453–460.

    PubMed  CAS  Google Scholar 

  110. Collins, M.D., Rodrigues, U., Pigott, N.E., and Facklam, R.R., Enterococcus dispar sp. nov., a New Enterococcus Species from Human Sources, Lett. Appl. Microbiol., 1991, vol. 12, pp. 95–98.

    PubMed  CAS  Google Scholar 

  111. Botina, S.G. and Sukhodolets, V.V., Speciation in Bacteria: Comparison of the 16S rRNA Genes for Closely Related Enterococci Species. Rus. J. Genet., 2006 vol. 42, no. 3, pp. 247–251.

    Article  CAS  Google Scholar 

  112. Liao, D., Gene Conversion Drives within Genic Sequences: Concerted Evolution of Ribosomal RNA Genes in Bacteria and Archaea, J. Mol. Evol., 2000, vol. 51, pp. 305–317.

    PubMed  CAS  Google Scholar 

  113. Cilia, V., Lafay, B., and Christen, R., Sequence Heterogeneities Among 16S Ribosomal RNA Sequences, and their Effect on Phylogenetic Analyses at the Species Level, Mol. Biol. Evol., 1996, vol. 13, pp. 451–461.

    PubMed  CAS  Google Scholar 

  114. Hashimoto, J.G., Stevenson, B.S., and Schmidt, T.M., Rates and Consequences of Recombination between rRNA Operons, J. Bacteriol., 2003, vol. 185, pp. 966–972.

    Article  PubMed  CAS  Google Scholar 

  115. Fox, G.E., Wisotzkey, J.D., and Jurshuk, P., How Close Is Close: 16S rRNA Sequence Identity May not be Sufficient to Guarantee Species Identity, Int. J. Syst. Bacteriol., 1992, vol. 42, pp. 166–170.

    Article  PubMed  CAS  Google Scholar 

  116. Kumar, S., Tamura, K., and Nei, M., MEGA: Molecular Evolutionary Genetic Analysis, Version 1.0 Pennsylvania State Univ.: University Park, PA, 1993.

    Google Scholar 

  117. Woese, C.R., Bacterial Evolution, Microbiol. Rev., 1987, vol. 51, pp. 221–271.

    PubMed  CAS  Google Scholar 

  118. Pace, N.R., New Perspective on the Natural Microbial World: Molecular Microbial Ecology, Feature, 1996, vol. 62, pp. 463–470.

    Google Scholar 

  119. Klaenhammer, T., Altermann, E., Arigoni, F., et al., Discovering Lactic Acid Bacteria by Genomics, Antonie Van Leeuwenhoek, 2002, vol. 82, pp. 29–58.

    Article  PubMed  CAS  Google Scholar 

  120. Snel, B., Bork, P., and Huynen, M.A., Genome Phylogeny Based on Gene Content, Nat. Genet., 1999, vol. 21, pp. 108–110.

    Article  PubMed  CAS  Google Scholar 

  121. Fitz-Gibbon, S.T. and House, C.H., Whole Genome-Based Phylogenetic Analysis of Free-Living Microorganisms, Nucl. Acids Res., 1999, vol. 27, pp. 4218–4222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.G. Botina, Yu.D. Tsygankov, V.V. Sukhodolets, 2006, published in Genetika, 2006, Vol. 42, No. 12, pp. 1621–1635.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botina, S.G., Tsygankov, Y.D. & Sukhodolets, V.V. Identification of industrial strains of lactic acid bacteria by methods of molecular genetic typing. Russ J Genet 42, 1367–1379 (2006). https://doi.org/10.1134/S1022795406120039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406120039

Keywords

Navigation