Skip to main content
Log in

Spatial organization of the eukaryotic genome and the action of epigenetic mechanisms

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genome activity in eukaryotic cells is regulated at different levels. Long-term activation and repression of gene expression is controlled by epigenetic mechanisms. The main feature of epigenetic mechanisms is that regulatory events, provided by these mechanisms, are preserved in a series of cellular generations upon mitotic division, i.e., in a certain sense are inherited. Most of the epigenetic mechanisms, known so far, act at the level of nucleosomes and the dynamics of nucleosomal fibre. The important signal elements of epigenetic system are DNA methylation, histone modifications, and the inclusion of noncanonical forms of the histones in nucleosomes. In the present study, we substantiate the statement that the large-scale spatial organization of the DNA in eukaryotic cell also plays an important role in the action of epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wrzeska, M. and Rejduch, B., Genomic Imprinting in Mammals, J. Appl. Genet., 2004, vol. 45, pp. 427–433.

    PubMed  Google Scholar 

  2. Soejima, H. and Wagstaff, J., Imprinting Centers, Chromatin Structure, and Disease, J. Cell. Biochem., 2005, vol. 95, pp. 226–233.

    Article  PubMed  CAS  Google Scholar 

  3. Reinhart, B. and Chaillet, J.R., Genomic Imprinting: Cis-Acting Sequences and Regional Control, Int. Rev. Cytol., 2005, vol. 243, pp. 173–213.

    Article  PubMed  CAS  Google Scholar 

  4. Bender, J., DNA Methylation and Epigenetics, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 41–68.

    Article  PubMed  CAS  Google Scholar 

  5. Das, P.M. and Singal, R., DNA Methylation and Cancer, J. Clin. Oncol., 2004, vol. 22, pp. 4632–4642.

    Article  PubMed  CAS  Google Scholar 

  6. Caiafa, P. and Zampieri, M., DNA Methylation and Chromatin Structure: The Puzzling CpG Islands, J. Cell. Biochem., 2005, vol. 94, pp. 257–265.

    Article  PubMed  CAS  Google Scholar 

  7. Razin, A., CpG Methylation, Chromatin Structure and Gene Silencing—A Three-Way Connection, EMBO J., 1998, vol. 17, pp. 4905–4908.

    Article  PubMed  CAS  Google Scholar 

  8. Santos-Rosa, H. and Caldas, C., Chromatin Modifier Enzymes, the Histone Code and Cancer, Eur. J. Cancer, 2005, vol. 41, pp. 2381–2402.

    Article  PubMed  CAS  Google Scholar 

  9. Van Attikum, H. and Gasser, S.M., The Histone Code at DNA Breaks: A Guide to Repair?, Nat. Rev. Mol. Cell. Biol., 2005, vol. 6, pp. 757–765.

    Article  PubMed  CAS  Google Scholar 

  10. Cosgrove, M.S. and Wolberger, C., How Does the Histone Code Work?, Biochem. Cell Biol., 2005, vol. 83, pp. 468–476.

    Article  PubMed  CAS  Google Scholar 

  11. Margueron, R., Trojer, P., and Reinberg, D., The Key to Development: Interpreting the Histone Code?, Curr. Opin. Genet. Dev., 2005, vol. 15, pp. 163–176.

    Article  PubMed  CAS  Google Scholar 

  12. Peterson, C.L. and Laniel, M.A., Histones and Histone Modifications, Curr. Biol., 2004, vol. 14, pp. R546–R551.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Y., Fischle, W., Cheung, W., et al., Beyond the Double Helix: Writing and Reading the Histone Code, Novartis Found Symp., 2004, vol. 259, pp. 3–17.

    Article  PubMed  CAS  Google Scholar 

  14. Lehnertz, B., Ueda, Y., Derijck, A.A., et al., Suv39h-Mediated Histone H3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin, Curr. Biol., 2003, vol. 13, pp. 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  15. Cremer, T., Kurz, A., Zirbel, R., et al., Role of Chromosome Territories in the Functional Compartmentalization of the Cell Nucleus, Cold Spring Harbor Symp. Quant. Biol., 1993, vol. 58, pp. 777–792.

    PubMed  CAS  Google Scholar 

  16. Cremer, T., Kreth, G., Koester, H., et al., Chromosome Territories, Interchromatin Domain Compartment, and Nuclear Matrix: An Integrated View of the Functional Nuclear Architecture, Crit. Rev. Eukaryotic Gene Exp., 2000, vol. 10, pp. 179–212.

    CAS  Google Scholar 

  17. Cremer, T. and Cremer, C., Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells, Nat. Rev. Genet., 2001, vol. 2, pp. 292–301.

    Article  PubMed  CAS  Google Scholar 

  18. Bickmore, W.A. and Teague, P., Influences of Chromosome Size, Gene Density and Nuclear Position on the Frequency of Constitutional Translocations in the Human Population, Chromosome Res., 2002, vol. 10, pp. 707–715.

    Article  PubMed  CAS  Google Scholar 

  19. Boyle, S., Gilchrist, S., Bridger, J.M., et al., The Spatial Organization of Human Chromosomes within the Nuclei of Normal and Emerin-Mutant Cells, Hum. Mol. Genet., 2001, vol. 10, pp. 211–219.

    Article  PubMed  CAS  Google Scholar 

  20. Croft, J.A., Bridger, J.M., Boyle, S., et al., Differences in the Localization and Morphology of Chromosomes in the Human Nucleus, J. Cell Biol., 1999, vol. 145, pp. 1119–1131.

    Article  PubMed  CAS  Google Scholar 

  21. Petrova, N.V., Iarovaia, O.V., Verbovoy, V.A., and Razin, S.V., Specific Radial Positions of Centromeres of Human Chromosomes X, 1, and 19 Remain Unchanged in Chromatin-Depleted Nuclei of Primary Human Fibroblasts: Evidence for the Organizing Role of the Nuclear Matrix, J. Cell. Biochem., 2005, vol. 96, pp. 850–857.

    Article  PubMed  CAS  Google Scholar 

  22. Mahy, N.L., Perry, P.E., Gilchrist, S., et al., Spatial Organization of Active and Inactive Genes and Noncoding DNA within Chromosome Territories, J. Cell Biol., 2002, vol. 157, pp. 579–589.

    Article  PubMed  CAS  Google Scholar 

  23. Mahy, N.L., Perry, P.E., and Bickmore, W.A., Gene Density and Transcription Influence the Localization of Chromatin Outside of Chromosome Territories Detectable by FISH, J. Cell Biol., 2002, vol. 159, pp. 753–763.

    Article  PubMed  CAS  Google Scholar 

  24. Wiblin, A.E., Cui, W., Clark, A.J., and Bickmore, W.A., Distinctive Nuclear Organisation of Centromeres and Regions Involved in Pluripotency in Human Embryonic Stem Cells, J. Cell Sci., 2005, vol. 118, pp. 3861–3868.

    Article  PubMed  CAS  Google Scholar 

  25. Doucas, V., The Promyelocytic (PML) Nuclear Compartment and Transcription Control, Biochem. Pharmacol., 2000, vol. 60, pp. 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  26. De Laat, W. and Grosveld, F., Spatial Organization of Gene Expression: The Active Chromatin Hub, Chromosome Res., 2003, vol. 11, pp. 447–459.

    Article  PubMed  Google Scholar 

  27. Liu, Z. and Garrard, W.T., Long-Range Interactions Between Three Transcriptional Enhancers, Active V Kappa Gene Promoters, and a 3′ Boundary Sequence Spanning 46 Kilobases, Mol. Cell. Biol., 2005, vol. 25, pp. 3220–3231.

    Article  PubMed  CAS  Google Scholar 

  28. Vakoc, C.R., Letting, D.L., Gheldof, N., et al., Proximity Among Distant Regulatory Elements at the Beta-Globin Locus Requires GATA-1 and FOG-1, Mol. Cell., 2005, vol. 17, pp. 453–462.

    Article  PubMed  CAS  Google Scholar 

  29. Spilianakis, C.G. and Flavell, R.A., Long-Range Intrachromosomal Interactions in the T Helper Type 2 Cytokine Locus, Nat. Immunol., 2004, vol. 5, pp. 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  30. Razin, S.V., The Nuclear Matrix and Spatial Organization of Chromosomal DNA Domains, Austin, Texas, United States: R.G. Landes Company, 1997.

    Google Scholar 

  31. Berezney, R., Mortillaro, M.J., Ma, H., et al., The Nuclear Matrix: A Structural Milieu for Genomic Function, Int. Rev. Cytol., 1995, vol. 162A, pp. 1–65.

    PubMed  CAS  Google Scholar 

  32. Razin, S.V., DNA Interaction with the Nuclear Matrix and Spatial Organization of Replication and Transcription, BioEssays, 1987, vol. 6, pp. 19–23.

    Article  PubMed  CAS  Google Scholar 

  33. Gregory, P.D. and Horz, W., Chromatin and Transcription: How Transcription Factors Battle with a Repressive Chromatin Environment, Eur. J. Biochem., 1998, vol. 251, pp. 9–18.

    Article  PubMed  CAS  Google Scholar 

  34. Muchardt, C. and Yaniv, M., ATP-Dependent Chromatin Remodelling: SWI/SNF and Co. Are on the Job, J. Mol. Biol., 1999, vol. 293, pp. 187–198.

    Article  PubMed  CAS  Google Scholar 

  35. Zaidi, S.K., Young, D.W., Choi, J.Y., et al., The Dynamic Organization of Gene-Regulatory Machinery in Nuclear Microenvironments, EMBO Rep., 2005, vol. 6, pp. 128–133.

    Article  PubMed  CAS  Google Scholar 

  36. Eberharter, A., Ferreira, R., and Becker, P., Dynamic Chromatin: Concerted Nucleosome Remodelling and Acetylation, Biol. Chem., 2005, vol. 386, pp. 745–751.

    Article  PubMed  CAS  Google Scholar 

  37. Krajewski, W.A. and Becker, P.B., Reconstitution of Hyperacetylated, DNase I-Sensitive Chromatin Characterized by High Conformational Flexibility of Nucleosomal DNA, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1540–1545.

    Article  PubMed  CAS  Google Scholar 

  38. Krajewski, W.A., Effect of in Vivo Histone Hyperacetylation on the State of Chromatin Fibers, J. Biomol. Struct. Dyn., 1999, vol. 16, pp. 1097–1106.

    PubMed  CAS  Google Scholar 

  39. Krajewski, W.A., Chromatin Structural Transitions in Drosophila Embryo Cell-Free Extract Result in a High Conformational Flexibility of Nucleosomal DNA, FEBS Lett., 1999, vol. 452, pp. 215–218.

    Article  PubMed  CAS  Google Scholar 

  40. Pienta, K.J. and Coffey, D.S., A Structural Analysis of the Role of the Nuclear Matrix and DNA Loops in the Organization of the Nucleus and Chromosome, J. Cell Sci. Suppl, 1984, vol. 1, pp. 123–135.

    PubMed  CAS  Google Scholar 

  41. Marsden, M.P. and Laemmli, U.K., Metaphase Chromosome Structure: Evidence for a Radial Loop Model, Cell, 1979, vol. 17, pp. 849–858.

    Article  PubMed  CAS  Google Scholar 

  42. Adolph, K.W., Chang, S.M., Paulson, J.R., and Laemmli, U.K., Isolation of a Protein Scaffold from Mitotic HeLa Cell Chromosomes, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 4937–4941.

    Article  CAS  Google Scholar 

  43. Razin, S.V., Mantieva, V.L., and Georgiev, G.P., The Similarity of DNA Sequences Remaining Bound to Scaffold Upon Nuclease Treatment of Interphase Nuclei and Metaphase Chromosomes, Nucl. Acids Res., 1979, vol. 7, pp. 1713–1735.

    PubMed  CAS  Google Scholar 

  44. Razin, S.V., Gromova, I.I., and Iarovaia, O.V., Specificity and Functional Significance of DNA Interaction with the Nuclear Matrix: New Approaches to Clarify the Old Questions, Int. Rev. Cytol., 1995, vol. 162B, pp. 405–448.

    PubMed  CAS  Google Scholar 

  45. Jackson, D.A., Dickinson, P., and Cook, P.R., The Size of Chromatin Loops in HeLa Cells, EMBO J., 1990, vol. 9, pp. 567–571.

    PubMed  CAS  Google Scholar 

  46. Cook, P.R., Brazell, I.A., and Jost, E., Characterization of Nuclear Structures Containing Superhelical DNA, J. Cell Sci., 1976, vol. 22, pp. 303–324.

    PubMed  CAS  Google Scholar 

  47. Adolph, K.W., Chang, S.M., and Laemmli, U.K., Role of Nonhistone Proteins in Metaphase Chromosomes Structure, Cell, 1977, vol. 12, pp. 805–816.

    Article  PubMed  CAS  Google Scholar 

  48. Paulson, J.R. and Laemmli, U.K., The Structure of Histone-Depleted Metaphase Chromosomes, Cell, 1977, vol. 12, pp. 817–828.

    Article  PubMed  CAS  Google Scholar 

  49. Hancock, R. and Hughes, M.E., Organization of DNA in the Eukaryotic Nucleus, Biol. Cell., 1982, vol. 44, pp. 201–212.

    CAS  Google Scholar 

  50. Cook, P.R. and Brazell, I.A., Mapping Sequences in Loops of Nuclear DNA by Their Progressive Detachment from the Nuclear Cage, Nucl. Acids Res., 1980, vol. 8, pp. 2895–2907.

    PubMed  CAS  Google Scholar 

  51. Robinson, S.I., Nelkin, B.D., and Volgelstein, B., The Ovalbumin Gene Is Associated with the Nuclear Matrix of Chicken Oviduct Cells, Cell, 1982, vol. 28, pp. 99–106.

    Article  PubMed  CAS  Google Scholar 

  52. Robinson, S.I., Small, D., Idzerda, R., et al., The Association of Active Genes with the Nuclear Matrix of the Chicken Oviduct, Nucleic Acids Res., 1983, vol. 15, pp. 5113–5130.

    Google Scholar 

  53. Ciejek, E.M., Tsai, M.-J., and O’Malley, B.W., Actively Transcribed Genes Are Associated with the Nuclear Matrix, Nature, 1983, vol. 306, pp. 607–609.

    Article  PubMed  CAS  Google Scholar 

  54. Cockerill, P.N. and Garrard, W.T., Chromosomal Loop Anchorage of the Kappa Immunoglobulin Gene Occurs next to the Nenhancer in a Region Containing Topoisomerase II Sites, Cell, 1986, vol. 44, pp. 273–282.

    Article  PubMed  CAS  Google Scholar 

  55. Izaurralde, E., Mirkovich, J., and Laemmli, U.K., Interaction of DNA with Nuclear Scaffolds in Vitro, J. Mol. Biol., 1988, vol. 200, pp. 111–125.

    Article  PubMed  CAS  Google Scholar 

  56. Iarovaia, O.V., Hancock, R., Lagarkova, M.A., et al., Mapping of Genomic DNA Loop Organization in a 500-Kilobase Region of the Drosophila X Chromosome Using the Topoisomerase II-Mediated DNA Loop Excision Protocol, Mol. Cell. Biol., 1996, vol. 16, pp. 302–308.

    PubMed  CAS  Google Scholar 

  57. Gromova, I.I., Thomsen, B., and Razin, S.V., Different Topoisomerase II Antitumor Drugs Direct Similar Specific Long-Range Fragmentation of an Amplified c-MYC Gene Locus in Living Cells and in High-Salt-Extracted Nuclei, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 102–106.

    Article  PubMed  CAS  Google Scholar 

  58. Razin, S.V., Hancock, R., Iarovaia, O., et al., Structural-Functional Organization of Chromosomal DNA Domains, Cold Spring Harbor Symp. Quant. Biol., 1993, vol. 58, pp. 25–35.

    PubMed  CAS  Google Scholar 

  59. Razin, S.V. and Gromova, I.I., The Channels Model of the Nuclear Matrix Structure, BioEssays, 1995, vol. 17, pp. 443–450.

    Article  PubMed  CAS  Google Scholar 

  60. Razin, S.V., Rzheshovskaya-Volni, I., Moro, Zh., and Sherrer, K., Mapping of DNA Attachment Sites to the Nuclear Skeleton in the Chicken Globin Gene Domain in Functionally Active and Functionally Inactive Nuclei, Mol. Biol. (Moscow), 1985, vol. 19, pp. 376–385.

    Google Scholar 

  61. Farache, G., Razin, S.V., Rzeszowska-Wolny, J., et al., Mapping of Structural and Transcription-Related Matrix Attachment Sites in the Alpha-Globin Gene Domain of Avian Erythroblasts and Erythrocytes, Mol. Cell. Biol., 1990, vol. 10, pp. 5349–5358.

    PubMed  CAS  Google Scholar 

  62. Iarovaia, O.V., Bystritskiy, A., Ravcheev, D., et al., Visualization of Individual DNA Loops and a Map of Loop Domains in the Human Dystrophin Gene, Nucl. Acids Res., 2004, vol. 32, pp. 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  63. Iarovaia, O.V., Akopov, S.B., Nikolaev, L.G., et al., Induction of Transcription within Chromosomal DNA Loops Flanked by MAR Elements Causes an Association of Loop DNA with the Nuclear Matrix, Nucl. Acids Res., 2005, vol. 33, pp. 4157–4163.

    Article  PubMed  CAS  Google Scholar 

  64. Van der Velden, H.M.V. and Wanka, F., The Nuclear Matrix—Its Role in the Spatial Organization and Replication of Eukaryotic DNA, Mol. Biol. Rep., 1987, vol. 12, pp. 69–77.

    Article  PubMed  Google Scholar 

  65. Lagarkova, M.A., Svetlova, E., Giacca, M., et al., A DNA Loop Anchorage Region Colocalizes with the Replication Origin Located Downstream to the Human Gene Encoding Lamin B2, J. Cell. Biochem., 1998, vol. 69, pp. 13–18.

    Article  PubMed  CAS  Google Scholar 

  66. Razin, S.V., Kekelidze, M.G., Lukanidin, E.M., et al., Replication Origins Are Attached to the Nuclear Skeleton, Nucl. Acids Res., 1986, vol. 14, pp. 8189–8207.

    PubMed  CAS  Google Scholar 

  67. Svetlova, E.Y., Razin, S.V., and Debatisse, M., Mammalian Recombination Hot Spot and DNA Loop Anchorage Region: A Model for the Study of Common Fragile Sites, J. Cell. Biochem., 2001, vol. S36, pp. 170–178.

    Article  Google Scholar 

  68. Bode, J., Schlake, T., Rios-Ramirez, M., et al., Scaffold/Matrix-Attached Regions: Structural Properties Creating Transcriptionally Active Loci, Int. Rev. Cytol., 1995, vol. 162A, pp. 389–454.

    PubMed  CAS  Google Scholar 

  69. Gasser, S.M. and Laemmli, U.K., Cohabitation of Scaffold Binding Regions with Upstream/Enhancer Elements of Three Developmentally Regulated Genes of Drosophila melanogaster, Cell, 1986, vol. 46, pp. 521–530.

    Article  PubMed  CAS  Google Scholar 

  70. Boulikas, T., Nature of DNA Sequences at the Attachment Regions of Genes to the Nuclear Matrix, J. Cell. Biochem., 1993, vol. 52, pp. 14–22.

    Article  PubMed  CAS  Google Scholar 

  71. Felsenfeld, G., Burgess-Beusse, B., Farrell, C., et al., Chromatin Boundaries and Chromatin Domains, Cold Spring Harbor Symp. Quant. Biol., 2004, vol. 69, pp. 245–250.

    Article  PubMed  CAS  Google Scholar 

  72. Yusufzai, T.M. and Felsenfeld, G., The 5′-HS4 Chicken Beta-Globin Insulator Is a CTCF-Dependent Nuclear Matrix-Associated Element, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 8620–8624.

    Article  PubMed  CAS  Google Scholar 

  73. Boulikas, T., Transcription Factor Binding Sites in the Matrix Attachment Region (MAR) of the Chicken Alpha-Globin Gene, J. Cell. Biochem., 1994, vol. 55, pp. 513–529.

    Article  PubMed  CAS  Google Scholar 

  74. Yan, Z.J. and Qian, R.L., The 5′-Flanking Cis-Acting Elements of the Human Epsilon-Globin Gene Associates with the Nuclear Matrix and Binds to the Nuclear Matrix Proteins, Cell Res., 1998, vol. 8, pp. 209–218.

    PubMed  CAS  Google Scholar 

  75. Porter, S.D., Hu, J., and Gilks, C.B., Distal Upstream Tyrosinase S/MAR-Containing Sequence Has Regulatory Properties Specific to Subsets of Melanocytes, Dev. Genet., 1999, vol. 25, pp. 40–48.

    Article  PubMed  CAS  Google Scholar 

  76. Holmes-Davis, R. and Comai, L., The Matrix Attachment Regions (MARs) Associated with the Heat Shock Cognate 80 Gene (HSC80) of Tomato Represent Specific Regulatory Elements, Mol. Genet. Genomics, 2002, vol. 266, pp. 891–898.

    Article  PubMed  CAS  Google Scholar 

  77. Razin, S.V., The Nuclear Matrix and Chromosomal DNA Loops: Is There Any Correlation between Partitioning of the Genome into Loops and Functional Domains, Cell. Mol. Biol. Lett., 2001, vol. 6, pp. 59–69.

    PubMed  CAS  Google Scholar 

  78. Chambeyron, S. and Bickmore, W.A., Does Looping and Clustering in the Nucleus Regulate Gene Expression?, Curr. Opin. Cell Biol., 2004, vol. 16, pp. 256–262.

    Article  PubMed  CAS  Google Scholar 

  79. Iarovaia, O.V., Shkumatov, P., and Razin, S.V., Breakpoint Cluster Regions of the AML-1 and ETO Genes Contain MAR Elements and Are Preferentially Associated with the Nuclear Matrix in Proliferating HEL Cells, J. Cell Sci., 2004, vol. 117, pp. 4583–4590.

    Article  PubMed  CAS  Google Scholar 

  80. Razin, S.V., Chromosomal DNA Loops May Constitute Basic Units of the Genome Organization and Evolution, Crit. Rev. Eukariotic Gene Exp., 1999, vol. 9, pp. 279–283.

    CAS  Google Scholar 

  81. Schubeler, D., Francastel, C., Cimbora, D.M., et al., Nuclear Localization and Histone Acetylation: A Pathway for Chromatin Opening and Transcription Activation of the Human β-Globin Locus, Gen. Dev., 2000, vol. 14, pp. 940–950.

    CAS  Google Scholar 

  82. Georgopoulos, K., Haematopoietic Cell-Fate Decisions, Chromatin Regulation and Ikaros, Nat. Rev. Immunol., 2002, vol. 2, pp. 162–174.

    Article  PubMed  CAS  Google Scholar 

  83. Kirstetter, P., Thomas, M., Dierich, A., et al., Ikaros Is Critical for B Cell Differentiation and Function, Eur. J. Immunol., 2002, vol. 32, pp. 720–730.

    Article  PubMed  CAS  Google Scholar 

  84. Westman, B.J., Mackay, J.P., and Gell, D., Ikaros: A Key Regulator of Haematopoiesis, Int. J. Biochem. Cell. Biol., 2002, vol. 34, pp. 1304–1307.

    Article  PubMed  CAS  Google Scholar 

  85. Brown, K.E., Guest, S.S., Smale, S.T., et al., Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin, Cell, 1997, vol. 91, pp. 845–854.

    Article  PubMed  CAS  Google Scholar 

  86. Trinh, L.A., Ferrini, R., Cobb, B.S., et al., Down-Regulation of TDT Transcription in CD4(+)CD8(+) Thymocytes by Ikaros Proteins in Direct Competition with an Ets Activator, Genes Dev., 2001, vol. 15, pp. 1817–1832.

    Article  PubMed  CAS  Google Scholar 

  87. Cobb, B.S., Morales-Alcelay, S., Kleiger, G., et al., Targeting of Ikaros to Pericentromeric Heterochromatin by Direct DNA Binding, Genes Dev., 2000, vol. 14, pp. 2146–2160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Razin, 2006, published in Genetika, 2006, Vol. 42, No. 12, pp. 1605–1614.

This paper finishes the series of publications devoted to the current problems of epigenetics (Russ. J. Genet., 2006, vol. 42, no. 9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razin, S.V. Spatial organization of the eukaryotic genome and the action of epigenetic mechanisms. Russ J Genet 42, 1353–1361 (2006). https://doi.org/10.1134/S1022795406120015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406120015

Keywords

Navigation