Skip to main content
Log in

The nuclear matrix — Its role in the spatial organization and replication of eukaryotic DNA

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dingman CW (1974) J. Theor. Biol. 43: 187–195

    Google Scholar 

  2. Wanka F, Pieck ACM, Bekers AGM & Mullenders LHF (1982) In: GG Maul (Ed) The Nuclear Envelope and the Nuclear Matrix (pp. 199–211) Alan R. Liss Inc., New York

    Google Scholar 

  3. Mayer DT & Culick A (1942) J. Biol. Chem. 146: 433–440

    Google Scholar 

  4. Zbarsky IB & Georgiev GP (1959) Biochim. Biophys. Acta 32: 301–302

    Google Scholar 

  5. Narayan S, Steele WJ, Smetana K & Busch H (1967) Exp. Cell Res. 46: 65–77

    Google Scholar 

  6. Berezney R. & Goffey DS (1974) Biochem. Biophys. Res. Commun. 60: 1410–1417

    Google Scholar 

  7. Comings DE & Okada TA (1976) Exp. Cell Res. 103: 341–360

    Google Scholar 

  8. Wanka F, Mullenders LHF, Bekers AGM, Pennings LJ Aelen JMA & Eygensteyn J (1977) Biochem. Biophys. Res. Commun. 74: 739–747

    Google Scholar 

  9. Pardoll DM, Vogelstein B & Coffey DS (1980) Cell 19: 527–536

    Google Scholar 

  10. Van Eekelen CAG, Salden MHL, Habets WJA, Van de Putte LBA & Van Venrooij WJ (1982) Exp. Cell Res. 141: 181–190

    Google Scholar 

  11. Berezney R (1984) In: LS Hnilica (Ed) Chromosomal Nonhistone Proteins. vol IV (pp. 119–180) CRC Press, Boca Raton

    Google Scholar 

  12. Poznanovic G & Sevaljevic L (1980) Cell Biol. Int. Rep. 4: 701–709

    Google Scholar 

  13. Fisher PA, Berrios M & Blobel G (1982) J. Cell Biol. 92: 674–686

    Google Scholar 

  14. Mitchelson KR, Bekers AGM & Wanka F (1979) J Cell Sci 39: 247–256

    Google Scholar 

  15. Potashkin JA, Zeigel RF & Huberman JA (1984) Exp Cell Res 153: 374–388

    Google Scholar 

  16. Herlan G & Wunderlich F (1976) Cytobiol. 13: 291–296

    Google Scholar 

  17. Bekers AGM, Gijzen HJ, Taalman RDFM & Wanka F (1981) J. Ultrastruct. Res. 75: 352–362

    Google Scholar 

  18. Dwyer N & Blobel G (1976) J. Cell Biol. 70: 581–591

    Google Scholar 

  19. Bekers AGM, Pieck ACM, Rijken AAM & Wanka F (1986) J. Cell Sci. 86: 155–171

    Google Scholar 

  20. Aebi U, Cohn J, Buhle L & Gerace L (1986) Nature 323: 560–564

    Google Scholar 

  21. Kaufmann SH, Coffey DS & Shaper JH (1981) Exp. Cell Res. 132: 105–123

    Google Scholar 

  22. Galcheva-Gargova Z, Petrov P & Dessev G (1982) Eur. J. Cell Biol. 28: 155–159

    Google Scholar 

  23. Bouvier D, Hubert J, Seve A-P & Bouteille M (1985) Exp. Cell Res. 156: 500–512

    Google Scholar 

  24. Berezney R & Coffey DS (1976). Adv. Enzyme Regul. 14: 63–100

    Google Scholar 

  25. Hodge LD, Mancini P, Davis FM & Heywood P (1977) J. Cell Biol. 72: 194–208

    Google Scholar 

  26. Matsuura T, Ueyama H, Nakayasu H & Ueda K (1981) Cell Struct. Funct. 6: 79–82

    Google Scholar 

  27. Lebkowsky JS & Laemmli UK (1982) J. Mol. Biol. 156: 325–344

    Google Scholar 

  28. Konstantinovic M & Sevaljevic L (1983) Biochim. Biophys. Acta 762: 1–8

    Google Scholar 

  29. Pieck ACM, Van der Velden HMW, Rijken AAM, Neis JM & Wanka F (1985) Chromosoma 91: 137–144

    Google Scholar 

  30. Gerace L, Blum A & Blobel G (1978) J. Cell Biol. 79: 546–566

    Google Scholar 

  31. Gerace L & Blobel G (1980) Cell 19: 277–287

    Google Scholar 

  32. Stick R & Hausen P (1980) Chromosoma 80: 219–236

    Google Scholar 

  33. Jost E & Johnson RT (1981) J. Cell Sci. 47: 25–53

    Google Scholar 

  34. McKeon F, Kirschner M & Caput D (1986) Nature 319: 463–468

    Google Scholar 

  35. Nakayasu H & Ueda K (1983) Exp. Cell Res. 143: 55–62

    Google Scholar 

  36. Carpo DG, Wan KM & Penman S (1982) Cell 29: 847–858

    Google Scholar 

  37. Herlan G, Eckert WA, Kaffenberger W & Wunderlich F (1979) Biochemistry 18: 1782–1788

    Google Scholar 

  38. Sevaljevic L, Poznanovic G, Petrovic M & Ratkovic M (1980) Periodicum Biologorum 82: 325–330

    Google Scholar 

  39. Berezney R & Coffey DS (1975) Science 189: 291–293

    Google Scholar 

  40. Vogelstein B, Pardoll DM & Coffey DS (1980) Cell 22: 79–85

    Google Scholar 

  41. Buongiorno-Nardelli M, Micheli G, Carri MT & Marilly M (1982) Nature 298: 100–102

    Google Scholar 

  42. Dijkwel PA, Wenink PW & Poddighe J (1986) Nucl. Acids Res. 14: 3241–3249

    Google Scholar 

  43. Mullenders LHF, Eygensteyn J, Broen A & Wanka F (1982) Biochim. Biophys. Acta 598: 70–77

    Google Scholar 

  44. Wanka F & Mitchelson KR (1979) In: W Sachsenmaier (Ed) Current Research in Physarum. Vol 120 (pp. 59–63) Univ. of Innsbruck press

  45. Dijkwel PA, Mullenders LHF & Wanka F (1979) Nucl. Acids. Res. 6: 219–230

    Google Scholar 

  46. Opstelten RJG, Dijkwel PA & Wanka (1981) Biochem. Biophys. Res. Commun. 101: 807–813

    Google Scholar 

  47. Hunt BF & Vogelstein B (1981) Nucl. Acids Res. 9: 349–363

    Google Scholar 

  48. Berezney R & Buchholtz LA (1981) Exp. Cell Res. 132: 1–13

    Google Scholar 

  49. McCready SJ, Godwin J, Mason DW, Brazell IA & Cook PR (1980) J. Cell Sci. 46: 365–386

    Google Scholar 

  50. Jackson DA & Cook PR (1986) EMBO J 5: 1403–1410

    Google Scholar 

  51. Carri MT, Micheli G, Graziano E, Pace T & Buongiorno-Nardelli M (1986) Exp. Cell Res. 164: 426–436

    Google Scholar 

  52. Valenzuela MS, Mueller GC & Dasgupta S (1983) Nucl. Acids Res 11: 2155–2164

    Google Scholar 

  53. Aelen JMA, Opstelten RJG & Wanka F (1983) Nucl. Acids Res. 11: 1181–1195

    Google Scholar 

  54. Wise GE & Prescott DM (1973) Proc. Natl. Acad. Sci. USA 70: 714–717

    Google Scholar 

  55. Huberman JA, Tsai A & Deich RA (1973) Nature 241: 32–36

    Google Scholar 

  56. Fakan S & Hancock R (1974) Exp. Cell Res. 83: 95–102

    Google Scholar 

  57. Smith HC, Puvion E, Buchholtz LA & Berezney R (1984) J. Cell Biol. 99: 1794–1802

    Google Scholar 

  58. Paulson JR & Laemmli UK (1977) Cell 12: 817–828

    Google Scholar 

  59. Van der Velden HMW, Van Willigen G, Wetzels RHW & Wanka F (1984) FEBS Lett. 171: 13–16

    Google Scholar 

  60. Razin SV, Kekelidze MG, Lukanidin EM, Scherrer K & Georgiev GP (1986) Nucl. Acids Res. 14: 8189–8207

    Google Scholar 

  61. Todorova M & Russev G (1984) Biochim. Biophys. Acta 783: 36–41

    Google Scholar 

  62. Van der Velden HMW, Top B & Wanka F (1986) Biochim. Biophys. Acta 867: 187–194

    Google Scholar 

  63. Méchali M & Kearsey S (1984) Cell 38: 55–64

    Google Scholar 

  64. Small D, Nelkin BD & Vogelstein B (1985) Nucl. Acids Res 13: 2413–2431

    Google Scholar 

  65. Robinson SI, Nelkin BD & Vogelstein B (1982) Cell 28: 99–106

    Google Scholar 

  66. Dalton S, Younghusband HB & Wells JRE (1986) Nucl. Acids Res. 14: 6507–6523

    Google Scholar 

  67. Mirkovitch J, Mirault M-E & Laemmli UK (1984) Cell 39: 223–232

    Google Scholar 

  68. Gasser SM & Laemmli UK (1986) Cell 46: 521–530

    Google Scholar 

  69. Razin SV, Yarovaya OV & Georgiev GP (1985) Nucl. Acids Res. 13: 7427–7444

    Google Scholar 

  70. Kirov N, Djondjurov L & Tsanev R (1984) J. Mol. Biol. 180: 601–614

    Google Scholar 

  71. Mullenders LHF, Van Kesteren AC, Bussmann GJM, Van Zeeland AA & Natarajan AT (1984) Mutat. Res. 141: 75–82

    Google Scholar 

  72. Mullenders LHF, Van Kesteren AC, Bussmann CJM, Van Zeeland AA & Natarajan AT (1986) Carcinogenesis 7: 995–1002

    Google Scholar 

  73. Buckler-White AJ, Humphrey GW & Pigiet V (1980) Cell 22: 37–46

    Google Scholar 

  74. Nelkin BD, Pardoll DM & Vogelstein B (1980) Nucl. Acids Res. 8: 5623–5633

    Google Scholar 

  75. Smith HC, Berezney R, Brewster JM & Rekosh D (1985) Biochem. 24: 1197–1202

    Google Scholar 

  76. Nelson WG, Pienta KJ, Barrack ER & Coffey DS (1986) Ann. Rev. Biophys. and Biophys. Chem. 15: 457–475

    Google Scholar 

  77. Vogelstein B, Nelkin B, Pardoll D & Hunt BF (1982) In: GG Maul (Ed) The Nuclear Envelope and the Nuclear Matrix (pp. 169–181) Alan R. Liss Inc., New York

    Google Scholar 

  78. Blumenthal AB, Kriegstein HJ & Hogness DS (1973) Cold Spring Harbor Symp. Quant. Biol. 38: 205–223

    Google Scholar 

  79. Marsden M & Laemmli UK (1979) Cell 17: 849–858

    Google Scholar 

  80. Pieck ACM, Rijken AAM & Wanka F (1987) FEBS Lett. 212: 276–280

    Google Scholar 

  81. Johnson RT & Rao PN (1970) Nature 226: 717–722

    Google Scholar 

  82. Rao PN, Wilson B & Puck TT (1977) J. Cell Physiol. 91: 131–142

    Google Scholar 

  83. Hameister H & Sperling K (1984) Chromosoma 90: 389–393

    Google Scholar 

  84. Fussel CP (1975) Chromosoma 50: 201–210

    Google Scholar 

  85. Hochstrasser M, Mathog D, Gruenbaum Y, Saumweber H & Sedat JW (1986) J. Cell Biol. 102: 112–123.

    Google Scholar 

  86. Rao PN & Johnson RT (1970) Nature 225: 159–164

    Google Scholar 

  87. Beach D, Piper M & Shall S (1980) Exp. Cell Res. 129: 211–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Velden, H.M.W., Wanka, F. The nuclear matrix — Its role in the spatial organization and replication of eukaryotic DNA. Molecular Biology Reports 12, 69–77 (1987). https://doi.org/10.1007/BF00368873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00368873

Key words

Navigation