Skip to main content
Log in

Imprinting in plants

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This review discusses the modern issues in epigenetic regulation in plants related to the imprinting at the levels of genome, locus, and gene. The data described follow the historical order: from the beginning of research into non-crossability of plant forms with different ploidies to the recent communications about allelic imprinting at r1 locus of maize and the control of synthesis of storage proteins with a high forage value. The classical experiments of Kermicle and Lin on the cytogenetic confirmation of the role of parental genome ratio in the endosperm in a successful development of viable caryopses are described in detail. Uniqueness of the experimental technique used by these authors is emphasized. The variants for overcoming the effect of imprinted signal in apomicts and plants with a tetrasporic embryo sac are considered. A considerable attention is paid to the imprinting in the species with polyploid series and to the hypothesis of endosperm balance number. The issues of potential practical application of imprinting in breeding practice are discussed. The results obtained in this direction demonstrate the ways to increase the forage value of maize zeins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturtevant, A.H., A History of Genetics, New York: Harper and Row, 1965, p. 28.

    Google Scholar 

  2. Guo, M., Rupe, M., Danilevskaya, O.N., et al., Genome Wide MRNA Profiling Reveals Heterochronic Allelic Variation and a New Imprinted Gene in Hybrid Maize Endosperm, Plant J., 2003, vol. 36, pp. 30–44.

    Article  PubMed  CAS  Google Scholar 

  3. Grimanelli, D., Perotti, E., Ramirez, J., and Leblanc, O., Timing of the Maternal to Zygotic Transition during Early Seed Development in Maize, Plant Cell, 2005, vol. 17, pp. 1061–1072.

    Article  PubMed  CAS  Google Scholar 

  4. http://www.geneimprint.com.

  5. Chaundry, A.M., Ming, L., Miller, C., et al., Fertilization —Independent Seed Development in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 4223–4228.

    Article  Google Scholar 

  6. Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M.A., and Gangliano, W.B., Maternal Control of Embryogenesis by MEDEA, a Polycomb Group Gene in Arabidopsis, Science, 1998, vol. 280, pp. 446–450.

    Article  PubMed  CAS  Google Scholar 

  7. Alleman, M. and Doctor, J., Genomic Imprinting in Plants: Observation and Evolutionary Implications, Plant Mol. Biol., 2000, vol. 43, pp. 147–161.

    Article  PubMed  CAS  Google Scholar 

  8. Vinkenoog, R., Bushell, C., Spielman, M., et al., Genomic Imprinting and Endosperm Development in Flowering Plants, Molec. Biothechnology, 2003, vol. 25, no. 2, pp. 149–184.

    Article  CAS  Google Scholar 

  9. Baroux, C.S., Spillane, C., and Grossniklaus, U., Genomic Imprinting during Seed Development, Adv. Genet., 2002, vol. 46, pp. 165–214.

    Article  PubMed  CAS  Google Scholar 

  10. Gehring, M., Choi, Y., and Fisher, R.L., Imprinting in Seed Development, Plant Cell, 2004, vol. 16, Suppl., pp. 203–213.

    Article  Google Scholar 

  11. Haig, D. and Westoby, M., Parent-Specific Gene Expression and the Triploid Endosperm, Am. Nat., 1989, vol. 134, pp. 147–155.

    Article  Google Scholar 

  12. Haig, D. and Westoby, M., Genomic Imprinting in Endosperm: Its Effect on Seed Development in Crosses Between Species, and between Different Ploidies of the Same Species, and Its Implications for the Evolution of Apomixes, Phil. Trans. R. Soc. London: [B], 1991, vol. 333, pp. 1–13.

    Google Scholar 

  13. Watkins, A.E., Genetic and Cytological Studies in Wheat, J. Genet., 1927, vol. 18, pp. 375–396.

    Google Scholar 

  14. Watkins, A.E., Hybrid Sterility and Incompatibility, J. Genet., 1932, vol. 25, pp. 325–340.

    Google Scholar 

  15. Thompson, W.P., Causes of Difference in Success of Reciprocal Interspecific Crosses, Am. Nat., 1930, vol. 64, pp. 407–421.

    Article  Google Scholar 

  16. Muntzing, A., Hybrid Incompatibility and the Origin of Polyploidy, Hereditas, 1933, vol. 18, pp. 33–55.

    Article  Google Scholar 

  17. Howard, H.W., The Size of Seeds in Diploid and Autotetraploid Brassica oleracea L., J. Genet., 1939, vol. 38, pp. 325–340.

    Google Scholar 

  18. Stephens, S.C., Colchicine-Produced Polyploids in Gossypium. 1. An Autotetraploid Asiatic Cotton and Certain of Its Hybrids with Wild Diploid Species, J. Genet., 1942, vol. 44, pp. 272–295.

    Google Scholar 

  19. Cooper, D.C. and Brink, R.A., Seed Collapse Following Mating between Diploid and Tetraploid Races of Lycopersicon pimpinellifolium, Genetics, 1945, vol. 30, pp. 376–401.

    PubMed  CAS  Google Scholar 

  20. Cooper, D.C., Caryopsis Development Following Matings between Diploid and Tetraploid Strains in Zea mays, Am. J. Bot., 1951, vol. 38, pp. 702–708.

    Article  Google Scholar 

  21. Brink, R.A. and Cooper, D.C., The Endosperm in Seed Development, Bot. Rev., 1947, vol. 13, pp. 423–541.

    Google Scholar 

  22. Håkansson, A., Seed Development after 2x, 4x Crosses in Galeopsis pubescens, Hereditas, 1952, vol. 38, pp. 425–448.

    Article  Google Scholar 

  23. Håkansson, A., Endosperm Formation After 2x, 4x Crosses in Centro in Centrain Cereals, Especially in Hordeum vulgare, Hereditas, 1953, vol. 39, pp. 57–64.

    Article  Google Scholar 

  24. Håkansson, A. and Ellerstrom, S., Seed Development After Reciprocal Crosses between Diploid and Tetraploid Rye, Hereditas, 1950, vol. 36, pp. 256–296.

    Article  Google Scholar 

  25. Håkansson, A., Seed Development of Brassica oleracea and B. rapa after Cetain Reciprocal Pollinations, Hereditas, 1956, vol. 42, pp. 373–396.

    Article  Google Scholar 

  26. Von Wangenheim, K.-H., Zur Ursache Der Abortion von Samenalangen in Diploid-Polyploid-Kreuzungen. II. Unterschiedliche Differenzierung von Endosperm mit gleichem Genom, Zeitschr. Vererbungslehre, 1962, vol. 93, pp. 319–334.

    Article  Google Scholar 

  27. Kihara, H. and Nishiyama, I., Different Compatibility in Reciprocal Crosses of Avena with Special Reference to Tetraploid Hybrids between Hexaploid and Diploid Species, Jpn. J. Bot., 1932, vol. 6, pp. 245–305.

    Google Scholar 

  28. Nishiyama, I. and Inomata, N., Embryological Studies on Cross-Incompatibility between 2x and 4x in Brassica, Japan. Genet., 1966, vol. 41, pp. 27–42.

    Google Scholar 

  29. Sarkar, K.R. and Coe, E.H., Anomalous Fertilization in Diploid-Tetraploid Crosses in Maize, Crop Sci., 1971, vol. 11, pp. 539–542.

    Article  Google Scholar 

  30. Kermicle, J.L., Pleiotropic Effects on Seed Development of the Indeterminate Gametophyte Gene in Maize, Am. J. Bot., 1971, vol. 58, pp. 1–7.

    Article  Google Scholar 

  31. Kermicle, J.L, Imprinting of Gene Action in Maize Endosperm, in Maize Breeding and Genetics, Walden, D.B., Ed., New York: Wiley, 1978, pp. 357–371.

    Google Scholar 

  32. Kermicle, J.L. and Alleman, M., Genetic Imprinting in Maize in Relation to the Angiosperm Life Cycle, Development Suppl., 1990, vol. 1, pp. 9–14.

    Google Scholar 

  33. Lin, B-Y., Ploidy Variation in Maize Endosperm, J. Heredity, 1977, vol. 68, pp. 143–149.

    Google Scholar 

  34. Lin, B.-Y., Association of Endosperm Reduction with Parental Imprinting in Maize, Genetics, 1982, vol. 100, pp. 475–486.

    PubMed  CAS  Google Scholar 

  35. Lin, B.-Y., Ploidy Barrier to Endosperm Development in Maize, Genetics, 1984, vol. 107, pp. 103–115.

    PubMed  CAS  Google Scholar 

  36. Crouse, H.Y., The Controlling Element in Sex Chromosome Behavior in Sciaria, Genetics, 1960, vol. 45, pp. 1429–1443.

    PubMed  CAS  Google Scholar 

  37. Kermicle, J.L., Dependence of the R-Mottled Aleurone Phenotype in Maize on Mode of Sexual Transmission, Genetics, 1970, vol. 66, pp. 69–85.

    PubMed  CAS  Google Scholar 

  38. Kermicle, J.L., Location, Time of Action, and Dominance Relations of an Imprintor Gene of R-Mottled in Maize, Modification of Gene Expression and non-Mendelian Inheritance, Ono, T. and Takaiwa, F., Eds., Tokyo: Nation. Inst. Agrobiol. Res., 1995, pp. 119–134.

    Google Scholar 

  39. Stebbins, G.L., Flowering Plants: Evolution above the Species Level, London: Edward Arnold, 1974, p. 372.

    Google Scholar 

  40. Carputo, D., Monti, L., Werner, J.E.., and Frusciante, L., Uses and Usefulness of Endosperm Balance Number, Theor. Appl. Genet., 1999, vol. 98, pp. 478–484.

    Article  Google Scholar 

  41. Carputo, D., Post-Zigotic Gametic Due to Endosperm Balance Number Explains Unusual Chromosome Number of 3x by 2x Progeny in Solanum, Sex. Plant Reprod., 1999, vol. 12, pp. 27–31.

    Article  Google Scholar 

  42. Ehlenfeldt, M.K. and Hanneman, R.E., Genetic Control of Endosperm Balance Number (EBN)—Three Additive Loci in a Threshold-Like System, Theor. Appl. Genet., 1988, vol. 75, pp. 825–832.

    Google Scholar 

  43. Ehlenfeldt, M.K. and Ortiz, R., Evidence on the Nature and Origins of Endosperm Dosage Requirements in Solanum and Other Angiosperm Genera, Sex. Plant Reprod., 1995, vol. 8, pp. 189–196.

    Article  Google Scholar 

  44. Johnston, S.A., Nijs, T.P.M., Peloquin, S.J., and Hanneman, R.E.., The Significance of Genic Balance to Endosperm Development in Interspecific Crosses, Theor. Appl. Genet., 1980, vol. 57, pp. 5–9.

    Google Scholar 

  45. Johnston, S.A. and Hanneman, R.E., Manipulations of Endosperm Balance Number Overcome Crossing Barriers between Diploid Solanum Species, Science, 1982, vol. 217, pp. 446–448.

    PubMed  CAS  Google Scholar 

  46. Johnston, S.A. and Hanneman, R.E.., Genetic Control of Endosperm Balance Number (EBN) in the Solanaceae Based on Trisomic and Mutation Analysis, Genome, 1996, vol. 39, pp. 314–321.

    PubMed  CAS  Google Scholar 

  47. Hayes, R.J., Dinu, I.I., and Thill, C.A., Unilateral and Bilateral Hybridization Barriers in Inter-Series Crosses of 4x 2EBN Solanum stoloniferum, S. pinnatisectum, S. cardiofillum, and 2x 2EBN s. tuberosum Haploids and Haploid-Species Hybrids, Sex. Plant Reprod., 2005, vol. 17, pp. 303–311.

    Article  Google Scholar 

  48. Marks, G.E., The Origin and Significance of Intraspecific Polyploidy: Experimental Evidence from Solanum chacoense, Evolution, 1966, vol. 20, pp. 552–557.

    Article  Google Scholar 

  49. Ortiz, R., Ehlenfeldt M.K. The Importance of Endosperm Balance Number in Potato Breeding and the Evolution of Under-Bearing Solanum Species, Euphitica, 1992, vol. 60, pp. 105–113.

    Google Scholar 

  50. von Wangenheim, K.H., Peloquin, S.J., and Hougas, R.W., Embryological Investigations on the Formation of Haploids in the Potato (Solanum tuberosum), Zeitschr. Vererbungslehre, 1960, vol. 91, pp. 391–399.

    Article  Google Scholar 

  51. von Wangenheim, K.-H., Untersuchungen ueber den Zusammenhang zwischen Chromosomenzahl und Kreuzbarkeit bei Solanum-Arten, Zeitschr. Indukt. Abstam. Vererbungslehre, 1957, vol. 88, pp. 21–37.

    Article  Google Scholar 

  52. Gill, B.S. and Waines, J.G., Paternal Regulation of Seed Development in Wheat Hybrids, Theor. Appl. Genet., 1978, vol. 51, pp. 265–270.

    Article  Google Scholar 

  53. Nishiyama, I. and Yabuno, T., Causal Relationships between Polar Nuclei in Double Fertilisation and Interspesific Cross-Incompatibility in Avena, Cytologia, 1978, vol. 43, pp. 453–466.

    Google Scholar 

  54. Lesins, K., Interspesific Crosses Involving Alfalfa Medicago dzhawakletica and M. sativa and Its Pecularities, Can. J. Genet. Cytol., 1961, vol. 3, pp. 135–152.

    Google Scholar 

  55. Quarin, C.L., Effect of Pollen Source and Pollen Ploidy on Endosperm Formation and Seed Set in Pseudogamous Apomictic Paspalum notatum, Sex. Plant. Reprod., 1999, vol. 11, pp. 331–335.

    Article  Google Scholar 

  56. Arisumi, T., Endosperm Balance Numbers among New Guinea-Indonesian Impatiens, J. Heredity, 1982, vol. 73, pp. 240–242.

    Google Scholar 

  57. Woodell, S.R.J. and Valentine, D.H., Studies in British Primulas. IX. Seed Incompatibility in Diploid-Autotet-raploid Crosses, New Phytol., 1961, vol. 60, pp. 282–294.

    Article  Google Scholar 

  58. Comai, L., A Differential Dosage Hypotesis for Parental Effects in Seed Development, Plant Cell, 2004, vol. 16, pp. 3174–3180.

    Article  PubMed  Google Scholar 

  59. Avery, A.G., Satina, S., and Rietsema, J., Blakeslee: The Genus Datura, New York: Ronald Press, 1959, p. 267.

    Google Scholar 

  60. Ehlenfeldt, M.K. and Hanneman, R.E., Endosperm Dosage Relationships in Lycopersicon, Theor. Appl. Genet., 1992, vol. 83, pp. 367–372.

    Article  Google Scholar 

  61. Rick, C.M., Barriers to Interbriding in Lycopersicon peruvianum, Evolution, 1963, vol. 17, pp. 216–232.

    Article  Google Scholar 

  62. Kindiger, B. and Beckett, J.B., Popcorn Germplasm As a Parental Source for Maize × Tripsacum dactyloides Hybridisation, Maydica, 1992, vol. 37, pp. 245–249.

    Google Scholar 

  63. Brink, R.A., Kermicle, J.L., and Zeibur, N.K., R Expression in Maize Endosperm, Embryos, and Seedlings, Genetics, 1970, vol. 66, pp. 87–96.

    PubMed  CAS  Google Scholar 

  64. Hurst, L.D. and McVean, G.T., Do We Understand the Evolution of Genomic Imprinting?, Curr. Opin. Genet. Dev., 1998, vol. 8, pp. 701–708.

    Article  PubMed  CAS  Google Scholar 

  65. Haig, D., Genomic Imprinting and Kinship: How Good Is Evidence?, Ann. Rev. Genet., 2004, vol. 38, pp. 553–585.

    Article  PubMed  CAS  Google Scholar 

  66. Lohe, A.R., and Chaudhury, A., Genetic and Epigenetic Processes in Seed Development, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 19–25.

    Article  PubMed  Google Scholar 

  67. Georgiades, P., Watkins, M., Burton, G.J., and Ferguson-Smith, A.C., Roles for Genomic Imprinting and Zygotic Genome in Placental Development, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 4522–4527.

    Article  PubMed  CAS  Google Scholar 

  68. Surani, M.A., Kothary, R., Allen, N.D., et al., Genome Imprinting and Development in the Mouse, Development, 1990, Suppl. pp 89–98.

  69. Tilghman, S.M., The Sins of the Fathers and Mothers: Genomic Imprinting in Mammalian Development, Cell, 1999, vol. 96, pp. 185–193.

    Article  PubMed  CAS  Google Scholar 

  70. Scott, R.J., Spielman, M., Bailey, J., and Dickinson, H.G., Parent-of-Origin Effects on Seed Development in Arabidopsis thaliana, Development, 1998, vol. 125, pp. 3329–3341.

    PubMed  CAS  Google Scholar 

  71. Chaudhuri, S. and Messing, J., Allele-Specific Parental Imprinting of dzr-1, a Posttranscriptional Regulator of Zein Accumulation, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 4867–4871.

    Article  PubMed  CAS  Google Scholar 

  72. Lund, G., Messing, J., and Viotti, A., Endosperm-Specific Demethylation and Activation of Specific Alleles of Alphatubulin Genes of Zea mays L., Mol. Gen. Genet., 1995, vol. 246, pp. 716–722.

    Article  PubMed  CAS  Google Scholar 

  73. Lund, G., Ciceri, P., and Viotti, A., Maternal-Specific Demethylation and Expression of Specific Alleles of Zein Genes in the Endosperm of Zea mays L., Plant J., 1995, vol. 8, pp. 571–581.

    Article  PubMed  CAS  Google Scholar 

  74. Richards, A.J., Eutriploid Facultative Agamospermy in Taraxacum, New Phytol., 1970, vol. 69, pp. 761–774.

    Article  Google Scholar 

  75. Abbot, R.J. and Gomes, M.F., Population Genetic Structure and Outcrossing Rate in Arabidopsis thaliana (L.) Heyn., Heredity, 1989, vol. 62, pp. 411–418.

    Google Scholar 

  76. Spielman, M., Vinkenoog, R., and Scott, R.J., The Epigenetic Basis of Gender in Flowering Plants and Mammals, Trends Genet., 2001, vol. 17, pp. 705–711.

    Article  PubMed  CAS  Google Scholar 

  77. Birchler, J.A., Dosage Analisis of Maize Endosperm Development, Ann. Rev. Genet., 1993, vol. 27, pp. 181–204.

    Article  PubMed  CAS  Google Scholar 

  78. Cooper, D.C. and Brink, R.A., The Endosperm-Embryo Relationship in an Autonomus Apomict, Taraxacum officinale, Bot. Gaz, 1949, vol. 111, pp. 139–153.

    Article  Google Scholar 

  79. Farquharson, L.I., Apomixis and Polyembryony in Tripsacum dactyloides, Am. J. Bot., 1955, vol. 42, pp. 737–743.

    Article  Google Scholar 

  80. Brown, W.V. and Emery, W.H.P., Apomixis in the Grameneae: Panicoidae, Am. J. Bot., 1958, vol. 45, pp. 253–263.

    Article  Google Scholar 

  81. Reddy, P.S. and D’Cruz, R., Mechanism of Apomixes in Dihantium annuum, Bot. Gaz., 1969, vol. 130, pp. 71–79.

    Article  Google Scholar 

  82. Rutishauser, A., Entwicklungserregung der Eizelle bei pseudogamen Arten der Gattung Ranunculus, Bull. Shweiz Akad. Med. Wissensh., 1954, vol. 10, pp. 491–512.

    CAS  Google Scholar 

  83. Leblanc, O., Pointe, C., and Hernandes, M., Cell Cycle Progression during Endosperm Development in Zea mays Dependents on Parental Dosage Effects, Plant J., 2002, vol. 32, pp. 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  84. Sokolov, V.A. and Khatypova, I.V., The Development Apomictic Maize: Update, Problems, and Perspective, Genetica Yugoslavia, 2000, vol. 32, no. 3, pp. 331–353.

    Google Scholar 

  85. Kindiger, B. and Sokolov, V.A., Progress in the Development of Apomixes Maize, Trends in Agronomy, 1997, vol. 1, pp. 75–94.

    Google Scholar 

  86. Savidan, Y., Apomixis: Genetics and Breeding, Plant Breed. Rev., 2000, vol. 18, pp. 13–86.

    CAS  Google Scholar 

  87. Boyes, J.W. and Thompson, W.P., The Development of the Endosperm and Embryo in Reciprocal Interspecific in Cereals, J. Genet., 1937, vol. 34, pp. 203–207.

    Article  Google Scholar 

  88. Berger, F., Endosperm: Crossroad of Seed Development, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 42–50.

    Article  PubMed  CAS  Google Scholar 

  89. Chaudhury, A.M. and Berger, F., Maternal Control of Seed Development, Semin. Cell Dev. Biol., 2001, vol. 2, pp. 381–386.

    Article  CAS  Google Scholar 

  90. Grossniklaus, U., Spillane, C., Page, D.R., and Köohler, C., Genomic Imprinting during Seed Development. Genomic Imprinting and Seed Development. Endosperm Formation with and without Sex, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 21–27.

    Article  PubMed  CAS  Google Scholar 

  91. Messing, J. and Grossniklaus, U., Genomic Imprinting in Plants, Results and Problems in Cell Differentiation: Genomic Imprinting, Ohlsson, R., Ed., Heidelberg: Springer Verlag, pp. 23–40.

  92. Luo, M., Dennis, E., Berger, F., et al., MINISEED3 (MINI3) a WRKY Family Gene, and HAIKU2 (IKU2), a Leucine-Reach Repeat (LRR) KINASE Gene, Are Regulators of Seed Size in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 48, pp. 17 531–17 536.

    Article  CAS  Google Scholar 

  93. Dinkins, R.D., Srivinasa, M.S., Meurer, C.A., et al., Increased Sulfur Amino Acids in Soybean Plants Over-expressing the Maize 15 kDa Zein Protein, In Vitro Cell. Dev. Biol., Plant, 2001, vol. 37, pp. 742–747.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © VA. Sokolov, 2006, published in Genetika, 2006, Vol. 42, No. 9, pp. 1250–1260.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, V.A. Imprinting in plants. Russ J Genet 42, 1043–1052 (2006). https://doi.org/10.1134/S1022795406090109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406090109

Keywords

Navigation