Skip to main content
Log in

Exploring an Emerging Issue: Crop Epigenetics

  • REVIEW
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In epigenetics, non-coding sequences are the primary matter. Transponible elements (TEs) are epigenetically marked in order to determine subsequent expression or inhibition, a process that occasionally generates the overexpression of major transcription factors (MTFs). Take this into consideration is fundamental to understanding those underlying epigenetic mechanisms and biological processes involved in the manifestation of variability (so far considered genetic variability), since this process might lead to conspicuous phenotype transformations in only one generation, which is still more noticeable in species subject to continuous selection procedures. This article reviews recent discoveries related to the genetics and epigenetics nature of tb1 and Rht loci, which are essentials in the development of maize (Zea mays) and wheat bread (Triticum aestivum) crops, respectively. In addition, an attempt is made to understand the epigenetic (paramutation, genomic imprinting) as well as environmental (hormonal) processes whose function might be related to these loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(Suppl 1):63–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Achard P, Herr A, Baulcombe D, Harberd N (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla E et al (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bastow R et al (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  • Belle CR et al (2009) Control of PHERES1 Imprinting in Arabidopsis by Direct Tandem Repeats. Mol Plant 2(Suppl 4):654–660

    Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113

    Article  CAS  PubMed  Google Scholar 

  • Chandler VL, Stam M (2004) Chromatin conversations: Mechanisms and implications of paramutation. Natl Rev Genet 5:532–544

    Article  CAS  Google Scholar 

  • Clark R, Linton E, Messing J, Doebley J (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark R, Wagler T, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Gen 38:594–597

    Article  CAS  Google Scholar 

  • Coe EH (1966) The properties, origin, and mechanism of conversion-type inheritance at the B locus in maize. Genetics 53(Suppl 6):1035–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 2 (Suppl 18):215–222

  • Doebley J et al (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Dussert Y et al (2013) Polymorphism pattern at a miniature inverted-repeat transposable element locus downstream of the domestication gene Teosinte-branched1 in wild and domesticated pearl millet. Mol Ecol 22(Suppl 2):327–340

    Article  CAS  PubMed  Google Scholar 

  • Floyd S, Bowman J (2005) MicroRNAs: micro-managing the plant genome. In: Meyer P (ed) Plant epigenetics. Blackwell, Oxford, pp 244–279

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentil MV, Maury S (2007) Characterization of Epigenetic Biomarkers Using New Molecular Approaches. In: Varshney RK (ed) Genomics-Assisted Crop Improvement, vol 1. Springer, Dordrecht, pp 351–370

    Chapter  Google Scholar 

  • Haseneyer G et al (2008) High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections. Theor Appl Genet 117:321–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hirsch S, Oldroyd GED (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4(Suppl 8):698–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh TF et al (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA 108:1755–1762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iltis HH (1983) From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita Y et al (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49:38–45

    Article  CAS  PubMed  Google Scholar 

  • Köhler C, Grossniklaus U (2005) Seed development and genomic imprinting in plants. Prog Mol Sub Biol 38:237–262

    Article  Google Scholar 

  • Köhler C, Hennig L, Spillane C (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Gen Dev 17:1540–1553

    Article  Google Scholar 

  • Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K (1995) A maize DNA-binding protein with bZIP motif is induced by low temperature. Mol Gener Gen 248:507–517

    Article  CAS  Google Scholar 

  • Lu G, Paul AL, McCarty DR, Ferl RJ (1996) Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell 8(Suppl 5):847–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa. Mol Biol Evol 29(Suppl 3):1005–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9(Suppl 2):217–227

    Article  CAS  PubMed  Google Scholar 

  • Ng M, Yanofsky MF (2001) Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell 13(Suppl 4):739–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palatnik JF et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425(Suppl 6955):257–263

    Article  CAS  PubMed  Google Scholar 

  • Patterson GI, Thorpe CJ, Chandler VL (1993) Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135(Suppl 3):881–894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Sarnowska EA et al (2013) DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiol 163(Suppl 1):305–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stam M, Belele C, Dorweiler JE, Chandler V (2002) Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Gen Dev 16:1906–1918

    Article  CAS  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki S et al (2007) Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 3:e55

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsaftaris A, Polidoros NA, Kapazoglou A, Nives ET, Kovacevic M (2008) Epigenetics and Plant Breeding. In: Janick J (ed) Plant Breeding Reviews, vol 30. Wiley, Toronto, pp 49–145

    Chapter  Google Scholar 

  • Tsiantis M (2011) A transposon in tb1 drove maize domestication. Nat Gen 11:1048–1050

    Article  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable Elements: Targets for Early Nutritional Effects on Epigenetic Gene Regulation. Mol Cel Biol 23(Suppl 15):5293–5300

    Article  CAS  Google Scholar 

  • Wen W et al (2013) Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J Exp Bot 64(Suppl 11):3299–3312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilhelm EP et al (2013) Genetic characterization and mapping of the Rht-1 homoeologs and flanking sequences in wheat. Theor Appl Genet 26(Suppl 5):1321–1336

  • Willige BC et al (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolff P et al (2011) High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm. PLoS Genet 7:e1002126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J et al (2013) Dynamic Evolution of Rht-1 Homologous Regions in Grass Genomes. PLoS ONE 8(Suppl 9):e75544. doi:10.1371/journal.pone.0075544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida T, Kawabe A (2013) Importance of Gene Duplication in the Evolution of Genomic Imprinting Revealed by Molecular Evolutionary Analysis of the Type I MADS-Box Gene Family in Arabidopsis Species. PLoS ONE 8(Suppl 9):e73588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

First, I thank Dr. Manu J. Dubin whose advices helped to organize the information presented in this work. Second, I also would like to thank my English teacher, Susana Cervi, who disinterestedly made the grammatical corrections in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis María Vaschetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaschetto, L.M. Exploring an Emerging Issue: Crop Epigenetics. Plant Mol Biol Rep 33, 751–755 (2015). https://doi.org/10.1007/s11105-014-0796-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0796-z

Keywords

Navigation