Skip to main content
Log in

Histone modification and regulation of chromatin function

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Nucleosomes play two main roles, acting as basal units in DNA compaction and coordinating most processes in chromosomes. The coordination is due to modification of histones, proteins forming nucleosomes. The review briefly describes the nucleosome structure and major modifications of histones and considers the role of such modifications in transcriptional suppression and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kornberg, R.D., Chromatin Structure: A Repeating Unit of Histones and DNA, Science, 1974, vol. 184, pp. 868–871.

    PubMed  CAS  Google Scholar 

  2. Oudet, P., Gross-Bellard, M., and Chambon, P., Electron Microscopic and Biochemical Evidence That Chromatin Structure Is a Repeating Unit, Cell (Cambridge, Mass.), 1975, vol. 4, pp. 281–300.

    CAS  Google Scholar 

  3. Finch, J.T., Lutter, L.C., Rhodes, D., et al., Structure of Nucleosome Core Particles of Chromatin, Nature, 1977, vol. 269, pp. 29–36.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas, J.O. and Kornberg, R.D., An Octamer of Histones in Chromatin and Free in Solution, Proc. Natl. Acad. Sci. USA, 1975, vol. 72, pp. 2626–2630.

    Article  PubMed  CAS  Google Scholar 

  5. Klug, A., Rhodes, D., Smith, J., et al., A Low Resolution Structure for the Histone Core of the Nucleosome, Nature, 1980, vol. 287, pp. 509–516.

    Article  PubMed  CAS  Google Scholar 

  6. Arents, G., Burlingame, R.W., Wang, B., et al., The Nucleosomal Core Histone Octamer at 3.1 Å Resolution: A Tripartite Protein Assembly and a Left-Handed Superhelix, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 10 148–10 152.

    Article  CAS  Google Scholar 

  7. Lilley, D.M.J., Pardon, J.F., and Richards, B.M., Structural Investigations of Chromatin Core Protein by Nuclear Magnetic Resonance, Biochemistry, 1977, vol. 16, pp. 2853–2860.

    Article  PubMed  CAS  Google Scholar 

  8. Luger, K., Mader, A.W., Richmond, R.K., et al., Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution, Nature, 1997, vol. 389, pp. 251–260.

    Article  PubMed  CAS  Google Scholar 

  9. Varshavsky, A.J., Bakayev, V.V., and Georgiev, G.P., Heterogeneity of Chromatin Subunits In vitro and Location of Histone H1, Nucleic Acids Res., 1976, vol. 3, pp. 477–492.

    PubMed  CAS  Google Scholar 

  10. Hayashi, K., Hofstaetter, T., and Yakuwa, N., Asymmetry of Chromatin Subunits Probed with Histone H1 in an H1-DNA Complex, Biochemistry, 1978, vol. 17, pp. 1880–1883.

    Article  PubMed  CAS  Google Scholar 

  11. Simpson, R.T., Structure of the Chromatosome, a Chromatin Particle Containing 160 Base Pairs of DNA and All the Histones, Biochemistry, 1978, vol. 17, pp. 5524–5531.

    Article  PubMed  CAS  Google Scholar 

  12. Sperling, J. and Sperling, R., Photochemical Cross-Linking of Histones to DNA Nucleosomes, Nucleic Acids Res., 1978, vol. 5, pp. 2755–2773.

    PubMed  CAS  Google Scholar 

  13. Thoma, F., Koller, T.H., and Klug, A., Involvement of Histone H1 in the Organization of the Nucleosome and of the Salt-Dependent Superstructures of Chromatin, J. Cell Biol., 1979, vol. 83, pp. 403–427.

    Article  PubMed  CAS  Google Scholar 

  14. Allan, J., Hartman, P.G., Crane-Robinson, C., and Aviles, F.X., The Structure of Histone H1 and Its Location in Chromatin, Nature, 1980, vol. 288, pp. 675–679.

    Article  PubMed  CAS  Google Scholar 

  15. Appels, R. and Wells, J.R., Synthesis and Turnover of DNA-Bound Histone during Maturation of Avian Red Blood Cells, J. Mol. Biol., 1972, vol. 70, pp. 425–434.

    Article  PubMed  CAS  Google Scholar 

  16. Hewish, D.R. and Burgoyne, L.A., Chromatin Sub-Structure: The Digestion of Chromatin DNA at Regularly Spaced Sites by a Nuclear Deoxyribonuclease, Biochem. Biophys. Res. Communs., 1973, vol. 52, pp. 504–510.

    Article  CAS  Google Scholar 

  17. Noll, M., Internal Structure of the Chromatin Subunit, Nucleic Acids Res., 1974, vol. 1, pp. 1573–1578.

    PubMed  CAS  Google Scholar 

  18. Mirzabekov, A.D., Shick, V.V., Belyavsky, A.V., and Bavykin, S.G., Primary Organization of Nucleosome Core Particle of Chromatin: Sequence of Histone Arrangement along DNA, Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 4184–4188.

    Article  PubMed  CAS  Google Scholar 

  19. Lutter, L.C., Precise Location of DNase I Cutting Sites in the Nucleosome Core Determined by High Resolution Gel Electrophoresis, Nucleic Acids Res., 1979, vol. 6, pp. 41–56.

    PubMed  CAS  Google Scholar 

  20. DeLange, R.J., Fambrough, D.M., Smith, E.L., and Bonner, J., Calf and Pea Histone IV: II. The Complete Amino Acid Sequence of Calf Thymus Histone IV; Presence of ε-N-Acetyllysine, J. Biol. Chem., 1969, vol. 244, pp. 319–334.

    PubMed  CAS  Google Scholar 

  21. DeLange, R.J., Fambrough, D.M., Smith, E.L., and Bonner, J., Calf and Pea Histone IV: III. Complete Amino Acid Sequence of Pea Seedling Histone IV; Comparison with the Homologous Calf Thymus Histone, J. Biol. Chem., 1969, vol. 244, pp. 5664–5679.

    Google Scholar 

  22. Sullivan, S., Sink, D.W., Trout, K.L., et al., The Histone Database, Nucleic Acid Res., 2002, vol. 30, pp. 341–342.

    Article  PubMed  CAS  Google Scholar 

  23. Thatcher, T.H. and Gorovsky, M.A., Phylogenetic Analysis of the Core Histones H2A, H2B, H3, and H4, Nucleic Acids Res., 1994, vol. 22, pp. 2174–2179.

    Google Scholar 

  24. Redon, C., Pilch, D., Rogakou, E., et al., Histone H2A Variants H2AX and H2AZ, Curr. Opin. Gen. Dev., 2002, vol. 12, pp. 162–169.

    Article  CAS  Google Scholar 

  25. Henikoff, S. and Ahmad, K., Assembly of Variant Histones into Chromatin, Annu. Rev. Cell. Dev. Biol., 2005, vol. 21, pp. 133–153.

    Article  PubMed  CAS  Google Scholar 

  26. Kamakaka, R.T. and Biggins, S., Histone Variants: Deviants?, Genes Dev., 2005, vol. 19, pp. 295–310.

    Article  PubMed  CAS  Google Scholar 

  27. Pusarla, R. and Bhargava, P., Histones in Functional Diversification: Core Histone Variants, FEBS J., 2005, vol. 272, pp. 5149–5168.

    Article  PubMed  CAS  Google Scholar 

  28. Phillips, D.M.P., The Presence of Acetyl Groups in Histones, Biochem. J., 1963, vol. 87, pp. 258–263.

    PubMed  CAS  Google Scholar 

  29. Allfrey, V.G., Faulkner, R., and Mirsky, A.E., Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis, Proc. Natl. Acad. Sci. USA, 1964, vol. 51, pp. 786–794.

    Article  PubMed  CAS  Google Scholar 

  30. Murray, K., The Occurrence of ε-N-Methyl Lysine in Histones, Biochemistry, 1964, vol. 3, pp. 10–15.

    Article  PubMed  CAS  Google Scholar 

  31. Roth, S.Y. and Allis, C.D., Chromatin Condensation: Does Histone H1 Dephosphorylation Play a Role?, Trends Biochem. Sci., 1992, vol. 17, pp. 93–98.

    Article  PubMed  CAS  Google Scholar 

  32. Tse, C., Sera, T., Wolffe, A.P., and Hansen, J.C., Disruption of Higher-Order Folding by Core Histone Acetylation Dramatically Enhances Transcription of Nucleosomal Arrays by RNA Polymerase III, Mol. Cell. Biol., 1998, vol. 18, pp. 4629–4638.

    PubMed  CAS  Google Scholar 

  33. Horn, P.J. and Peterson, C.L., Chromatin Higher Order Folding-Wrapping up Transcription, Science, 2002, vol. 297, pp. 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  34. Strahl, B.D. and Allis, C.D., The Language of Covalent Histone Modifications, Nature, 2000, vol. 403, pp. 41–45.

    Article  PubMed  CAS  Google Scholar 

  35. Jenuwein, T. and Allis, C.D., Translating the Histone Code, Science, 2001, vol. 293, pp. 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  36. Paik, W.K. and Kim, S., Enzymatic Demethylation of Calf Thymus Histones, Biochem. Biophys. Res. Commun., 1973, vol. 51, pp. 781–788.

    Article  PubMed  CAS  Google Scholar 

  37. Kubicek, S. and Jenuwein, T., A Crack in Histone Lysine Methylation, Cell (Cambridge, Mass.), 2004, vol. 119, pp. 903–906.

    CAS  Google Scholar 

  38. Rice, J.C. and Allis, C.D., Histone Methylation Versus Histone Acetylation: New Insights into Epigenetic Regulation, Curr. Opin. Cell Biol., 2001, vol. 13, pp. 263–273.

    Article  PubMed  CAS  Google Scholar 

  39. Stallcup, M.R., Role of Protein Methylation in Chromatin Remodeling and Transcriptional Regulation, Oncogene, 2001, vol. 20, pp. 3014–3020.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, Y. and Reinberg, D., Transcription Regulation by Histone Methylation: Interplay between Different Covalent Modifications of the Core Histone Tails, Genes Dev., 2001, vol. 15, pp. 2343–2360.

    Article  PubMed  CAS  Google Scholar 

  41. Lachner, M., O’sullivan, R.J., and Jenuwein, T., An Epigenetic Road Map for Histone Lysine Methylation, J. Cell Sci., 2003, vol. 116, pp. 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  42. Sims, R.J. III, Nishioka, K., and Reinberg, D., Histone Lysine Methylation: A Signature for Chromatin Function, Trends Genet., 2003, vol. 19, pp. 629–639.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang, L., Eugeni, E.E., Parthun, M.R., and Freitas, M.A., Identification of Novel Histone Post-Translational Modifications by Peptide Mass Fingerprinting, Chromosoma, 2003, vol. 112, pp. 77–86.

    Article  PubMed  CAS  Google Scholar 

  44. Margueron, R., Trojer, P., and Reinberg, D., The Key to Development: Interpreting the Histone Code?, Curr. Opin. Genet. Dev., 2005, vol. 15, pp. 163–176.

    Article  PubMed  CAS  Google Scholar 

  45. Bannister, A.J. and Kouzarides, T., Reversing Histone Methylation, Nature, 2005, vol. 436, pp. 1103–1106.

    Article  PubMed  CAS  Google Scholar 

  46. Jenuwein, T., Laible, G., Dorn, R., and Reuter, G., SET Domain Proteins Modulate Chromatin Domains in Eu-and Heterochromatin, Cell. Mol. Life Sci., 1998, vol. 54, pp. 80–93.

    Article  PubMed  CAS  Google Scholar 

  47. Alvarez-Venegasa, R. and Avramova, Z., SET-Domain Proteins of the Su(var)3-9, E(z) and Trithorax Families, Gene, 2002, vol. 285, pp. 25–37.

    Article  Google Scholar 

  48. Kouzarides, T., Histone Methylation in Transcriptional Control, Curr. Opin. Genet. Dev., 2002, vol. 12, pp. 198–209.

    Article  PubMed  CAS  Google Scholar 

  49. Feng, Q., Wang, H., Ng, H.H., et al., Methylation of H3-Lysine 79 Is Mediated by a New Family of HMTases without a SET Domain, Curr. Biol., 2002, vol. 12, pp. 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  50. McBride, A.E. and Silver, P.A., State of the Arg: Protein Methylation at Arginine Comes of Age, Cell (Cambridge, Mass.), 2001, vol. 106, pp. 5–8.

    CAS  Google Scholar 

  51. Schluckebier, G., O’Gara, M., Saenger, W., and Cheng, X., Universal Catalytic Domain Structure of AdoMet-Dependent Methyltransferases, J. Mol. Biol., 1995, vol. 247, pp. 16–20.

    Article  PubMed  CAS  Google Scholar 

  52. Niewmierzycka, A. and Clarke, S., S-Adenosylmethionine-Dependent Methylation in Saccharomyces cerevisiae: Identification of a Novel Protein Arginine Methyltransferase, J. Biol. Chem., 1999, vol. 274, pp. 814–824.

    Article  PubMed  CAS  Google Scholar 

  53. Xiao, B., Wilson, J.R., and Gamblin, S.J., SET Domains and Histone Methylation, Curr. Opin. Struct. Biol., 2003, vol. 13, pp. 699–705.

    Article  PubMed  CAS  Google Scholar 

  54. Marmorstein, R., Structure of SET Domain Proteins: A New Twist on Histone Methylation, Trends Biochem. Sci., 2003, vol. 28, pp. 59–62.

    Article  PubMed  CAS  Google Scholar 

  55. Shi, Y., Lan, F., Matson, C., et al., Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1, Cell (Cambridge, Mass.), 2004, vol. 119, pp. 941–953.

    CAS  Google Scholar 

  56. Wysocka, J., Milne, T.A., and Allis, C.D., Taking LSD1 to a New High, Cell (Cambridge, Mass.), 2005, vol. 122, pp. 654–658.

    CAS  Google Scholar 

  57. Trewick, S.C., McLaughlin, P.J., and Allshire, R.C., Methylation: Lost in Hydroxylation?, EMBO Rep., 2005, vol. 6, pp. 315–320.

    Article  PubMed  CAS  Google Scholar 

  58. Tsukada, Y., Fang, J., Erdjument-Bromage, H., et al., Histone Demethylation by a Family of JmjC Domain-Containing Proteins, Nature, 2006, vol. 439, pp. 811–816.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, Y., Wysocka, J., Sayegh, J., et al., Human PAD4 Regulates Histone Arginine Methylation Levels Via Demethylimination, Science, 2004, vol. 306, pp. 279–283.

    Article  PubMed  CAS  Google Scholar 

  60. Cuthbert, G.L., Daujat, S., Snowden, A.W., et al., Histone Deimination Antagonizes Arginine Methylation, Cell (Cambridge, Mass.), 2004, vol. 118, pp. 545–553.

    CAS  Google Scholar 

  61. Lee, M.G., Wynder, C., Cooch, N., and Shiekhattar, R., An Essential Role for CoREST in Nucleosomal Histone 3 Lysine 4 Demethylation, Nature, 2005, vol. 437, pp. 432–435.

    PubMed  CAS  Google Scholar 

  62. Metzger, E., Wissmann, M., Yin, N., et al., LSD1 Demethylates Repressive Histone Marks to Promote Androgen-Receptor-Dependent Transcription, Nature, 2005, vol. 437, pp. 436–439.

    PubMed  CAS  Google Scholar 

  63. Shi, Y.J., Matson, C., Lan, F., et al., Regulation of LSD1 Histone Demethylase Activity by Its Associated Factors, Mol. Cell, 2005, vol. 19, pp. 857–864.

    Article  PubMed  CAS  Google Scholar 

  64. Eissenberg, J.C., Molecular Biology of the Chromo Domain: An Ancient Chromatin Module Comes of Age, Gene, 2001, vol. 275, pp. 19–29.

    Article  PubMed  CAS  Google Scholar 

  65. Nielsen, P.R., Nietlispach, D., Mott, H.R., et al., Structure of the HP1 Chromodomain Bound to Histone H3 Methylated at Lysine 9, Nature, 2002, vol. 416, pp. 103–107.

    Article  PubMed  CAS  Google Scholar 

  66. Huyen, Y., Zgheib, O., Di Tullio, R.A., Jr., et al., Methylated Lysine 79 of Histone H3 Targets 53BP1 to DNA Double-Strand Breaks, Nature, 2004, vol. 432, pp. 406–411.

    Article  PubMed  CAS  Google Scholar 

  67. Sanders, S.L., Portoso, M., Mata, J., et al., Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA Damage, Cell (Cambridge, Mass.), 2004, vol. 119, pp. 603–614.

    CAS  Google Scholar 

  68. Ball, L.J., Murzina, N.V., Broadhurst, R.W., et al., Structure of the Chromatin Binding (Chromo) Domain from Mouse Modifier Protein 1, EMBO J., 1997, vol. 16, pp. 2473–2481.

    Article  PubMed  CAS  Google Scholar 

  69. Sterner, D.E. and Berger, S.L., Acetylation of Histones and Transcription-Related Factors, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 435–459.

    Article  PubMed  CAS  Google Scholar 

  70. Roth, S.Y., Denu, J.M., and Allis, C.D., Histone Acetyltransferases, Annu. Rev. Biochem., 2001, vol. 70, pp. 81–120.

    Article  PubMed  CAS  Google Scholar 

  71. Turner, B.M., Histone Acetylation and an Epigenetic Code, BioEssays, 2000, vol. 22, pp. 836–845.

    Article  PubMed  CAS  Google Scholar 

  72. Turner, B.M., Cellular Memory and the Histone Code, Cell (Cambridge, Mass.), 2002, vol. 111, pp. 285–291.

    CAS  Google Scholar 

  73. Dutnall, R.N., Tafrov, S.T., Sternglanz, R., and Ramarkrishnan, V., Structure of the Histone Acetyltransferase Hat1: A Paradigm for the GCN5-Related N-Acetyltransferase Superfamily, Cell (Cambridge, Mass.), 1998, vol. 94, pp. 427–438.

    CAS  Google Scholar 

  74. Wolf, E., Vassilev, A., Makino, Y., et al., Crystal Structure of a GCN5-Related N-Acetyltransferase: Serratia marcescens Aminoglycoside 3-N-Acetyltransferase, Cell (Cambridge, Mass.), 1998, vol. 94, pp. 439–449.

    CAS  Google Scholar 

  75. Clements, A., Rojas, J.R., Trievel, R.C., et al., Crystal Structure of the Histone Acetyltransferase Domain of the Human PCAF Transcriptional Regulator Bound to Coenzyme A, EMBO J., 1999, vol. 18, pp. 3521–3532.

    Article  PubMed  CAS  Google Scholar 

  76. Lin, Y., Fletcher, C.M., Zhou, J., et al., Solution Structure of the Catalytic Domain of GCN5 Histone Acetyl-transferase Bound to Coenzyme A, Nature, 1999, vol. 400, pp. 86–89.

    Article  PubMed  CAS  Google Scholar 

  77. Rojas, J.R., Trievel, R.C., Zhou, J., et al., Structure of Tetrahymena GCN5 Bound to Coenzyme A and a Histone H3 Peptide, Nature, 1999, vol. 401, pp. 93–98.

    Article  PubMed  CAS  Google Scholar 

  78. Trievel, R.C., Rojas, J.R., Sterner, D.E., et al., Crystal Structure and Mechanism of Histone Acetylation of the Yeast GCN5 Transcriptional Coactivator, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8931–8936.

    Article  PubMed  CAS  Google Scholar 

  79. de Ruijter, A.J.M., van Gennip, A.H., Caron, H.N., et al., Histone Deacetylases (HDACs): Characterization of the Classical HDAC Family, Biochem. J., 2003, vol. 370, pp. 737–749.

    Article  PubMed  Google Scholar 

  80. Verdin, E., Dequiedt, F., and Kasler, H.G., Class II Histone Deacetylases: Versatile Regulator, Trends Genet., 2003, vol. 19, pp. 286–293.

    Article  PubMed  CAS  Google Scholar 

  81. Blander, G. and Guarente, L., The Sir2 Family of Protein Deacetylases, Annu. Rev. Biochem., 2004, vol. 73, pp. 417–435.

    Article  PubMed  CAS  Google Scholar 

  82. Hisahara, S., Chiba, S., Matsumoto, H., and Horio, Y., Transcriptional Regulation of Neuronal Genes and Its Effect on Neural Functions: NAD-Dependent Histone Deacetylase SIRT1 (Sir2), J. Pharmacol. Sci., 2005, vol. 98, pp. 200–204.

    Article  PubMed  CAS  Google Scholar 

  83. Yang, X. and Gregoire, S., Class II Histone Deacetylases: From Sequence to Function, Regulation, and Clinical Implication, Mol. Cell. Biol., 2005, vol. 25, pp. 2873–2884.

    Article  PubMed  CAS  Google Scholar 

  84. Bjerling, P., Silverstein, R.A., Thon, G., et al., Functional Divergence between Histone Deacetylases in Fission Yeast by Distinct Cellular Localization and In vivo Specificity, Mol. Cell. Biol., 2002, vol. 22, pp. 2170–2181.

    Article  PubMed  CAS  Google Scholar 

  85. Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L., Transcriptional Silencing and Longevity Protein Sir2 Is an NAD-Dependent Histone Deacetylase, Nature, 2000, vol. 403, pp. 795–800.

    Article  PubMed  CAS  Google Scholar 

  86. Gao, L., Cueto, M.A., Asselbergs, F., and Atadja, P., Cloning and Functional Characterization of HDAC11, a Novel Member of the Human Histone Deacetylase Family, J. Biol. Chem., 2002, vol. 277, pp. 25 748–25 755.

    CAS  Google Scholar 

  87. Finnin, M.S., Donigian, J.R., Cohen, A., et al., Structures of a Histone Deacetylase Homologue Bound to the TSA and SAHA Inhibitors, Nature, 1999, vol. 401, pp. 188–193.

    Article  PubMed  CAS  Google Scholar 

  88. Dhalluin, C., Carlson, J.E., Zeng, L., et al., Structure and Ligand of a Histone Acetyltransferase Bromodomain, Nature, 1999, vol. 399, pp. 491–496.

    Article  PubMed  CAS  Google Scholar 

  89. Ornaghi, P., Ballario, P., Lena, A.M., et al., The Bromodomain of GCN5p Interacts In vitro with Specific Residues in the N Terminus of Histone H4, J. Mol. Biol., 1999, vol. 287, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  90. Winston, F. and Allis, C.D., The Bromodomain: A Chromatin-Targeting Module?, Nat. Struct. Biol., 1999, vol. 6, pp. 601–604.

    Article  PubMed  CAS  Google Scholar 

  91. Marmorstein, R. and Berger, S.L., Structure and Function of Bromodomains in Chromatin-Regulating Complexes, Gene, 2001, vol. 272, pp. 1–9.

    Article  PubMed  CAS  Google Scholar 

  92. Zeng, L. and Zhou, M., Bromodomain: An Acetyl-Lysine Binding Domain, FEBS Lett., 2002, vol. 513, pp. 124–128.

    Article  PubMed  CAS  Google Scholar 

  93. Owen, D.J., Ornaghi, P., Yang, J.C., et al., The Structural Basis for the Recognition of Acetylated Histone H4 by the Bromodomain of Histone Acetyltransferase GCN5p, EMBO J., 2000, vol. 19, pp. 6141–6149.

    Article  PubMed  CAS  Google Scholar 

  94. Jacobson, R.H., Ladurner, A.G., King, D.S., and Tjian, R., Structure and Function of a Human TAFII250 Double Bromodomain Module, Science, 2000, vol. 288, pp. 1422–1425.

    Article  PubMed  CAS  Google Scholar 

  95. Dey, A., Chitsaz, F., Abbasi, A., et al., The Double Bromodomain Protein Brd4 Binds to Acetylated Chromatin during Interphase and Mitosis, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 8758–8763.

    Article  PubMed  CAS  Google Scholar 

  96. Hans, F. and Dimitrov, S., Histone H3 Phosphorylation and Cell Division, Oncogene, 2001, vol. 20, pp. 3021–3027.

    Article  PubMed  CAS  Google Scholar 

  97. Nowak, S.J. and Corces, V.G., Phosphorylation of Histone H3: A Balancing Act between Chromosome Condensation and Transcriptional Activation, Trends Genet., 2004, vol. 20, pp. 214–220.

    Article  PubMed  CAS  Google Scholar 

  98. Ahn, S., Henderson, K.A., Keeney, S., and Allis, C.D., H2B (Ser10) Phosphorylation Is Induced during Apoptosis and Meiosis in S. cerevisiae, Cell Cycle, 2005, vol. 4, pp. 780–783.

    PubMed  CAS  Google Scholar 

  99. Bischoff, J.R. and Plowman, G.D., The Aurora/Ipllp Kinase Family: Regulators of Chromosome Segregation and Cytokinesis, Trends Cell Biol., 1999, vol. 9, pp. 454–459.

    Article  PubMed  CAS  Google Scholar 

  100. Hsu, J.Y., Sun, Z.W., Li, X., et al., Mitotic Phosphorylation of Histone H3 Is Governed by Ipl1/Aurora Kinase and Glc7/PP1 Phosphatase in Budding Yeast and Nematodes, Cell (Cambridge, Mass.), 2000, vol. 102, pp. 279–291.

    CAS  Google Scholar 

  101. Demidov, D., van Damme, D., Geelen, D., et al., Identification and Dynamics of Two Classes of Aurora-Like Kinases in Arabidopsis and Other Plants, Plant Cell, 2005, vol. 17, pp. 836–848.

    Article  PubMed  CAS  Google Scholar 

  102. Sassone-Corsi, P., Mizzen, C.A., Cheung, P., et al., Requirement of Rsk-2 for Epidermal Growth Factor-Activated Phosphorylation of Histone H3, Science, 1999, vol. 285, pp. 886–891.

    Article  PubMed  CAS  Google Scholar 

  103. Strelkov, I.S. and Davie, J.R., Ser-10 Phosphorylation of Histone H3 and Immediate Early Gene Expression in Oncogene-Transformed Mouse Fibroblasts, Cancer Res., 2002, vol. 62, pp. 75–78.

    PubMed  CAS  Google Scholar 

  104. Soloaga, A., Thomson, S., Wiggin, G.R., et al., MSK2 and MSK1 Mediate the Mitogen-and Stress-Induced Phosphorylation of Histone H3 and HMG-14, EMBO J., 2003, vol. 22, pp. 2788–2797.

    Article  PubMed  CAS  Google Scholar 

  105. Wang, Y., Zhang, W., Jin, Y., et al., The JIL-1 Tandem Kinase Mediates Histone H3 Phosphorylation and Is Required for Maintenance of Chromatin Structure in Drosophila, Cell (Cambridge, Mass.), 2001, vol. 105, pp. 433–443.

    CAS  Google Scholar 

  106. Nowak, S.J. and Corces, V.G., Protein Phosphatase 2A Activity Affects Histone H3 Phosphorylation and Transcription in Drosophila melanogaster, Mol. Cell. Biol., 2003, vol. 23, pp. 6129–6138.

    Article  PubMed  CAS  Google Scholar 

  107. Goldknopf, I.L., Taylor, C.W., Baum, R.M., et al., Isolation and Characterization of Protein A24, a “Histone-Like” Non-Histone Chromosomal Protein, J. Biol. Chem., 1975, vol. 250, pp. 7182–7187.

    PubMed  CAS  Google Scholar 

  108. Goldknopf, I.L. and Busch, H., Isopeptide Linkage between Nonhistone and Histone 2A Polypeptides of Chromosomal Conjugate-Protein A24, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 864–868.

    Article  PubMed  CAS  Google Scholar 

  109. Thorne, A.W., Sautiere, P., Briand, G., and Crane-Robinson, C., The Structure of Ubiquitinated Histone H2B, EMBO J., 1987, vol. 6, pp. 105–1010.

    Google Scholar 

  110. Robzyk, K., Recht, J., and Osley, M.A., Rad6-Dependent Ubiquitination of Histone H2B in Yeast, Science, 2000, vol. 287, pp. 501–504.

    Article  PubMed  CAS  Google Scholar 

  111. Hershko, A. and Ciechanover, A., The Ubiquitin System, Annu. Rev. Biochem., 1998, vol. 67, pp. 425–479.

    Article  PubMed  CAS  Google Scholar 

  112. Rea, S., Eisenhaber, F., O’Carroll, D., et al., Regulation of Chromatin Structure by Site-Specific Histone H3 Methyltransferases, Nature, 2000, vol. 406, pp. 593–599.

    Article  PubMed  CAS  Google Scholar 

  113. Peters, A.H.F.M., Kubicek, S., Mechtler, K., et al., Partitioning and Plasticity of Repressive Histone Methylation States in Mammalian Chromatin, Mol. Cell, 2003, vol. 12, pp. 1577–1589.

    Article  PubMed  CAS  Google Scholar 

  114. Schotta, G., Lachner, M., Sarma, K., et al., A Silencing Pathway to Induce H3-K9 and H4-K20 Tri-Methylation at Constitutive Heterochromatin, Genes Dev., 2004, vol. 18, pp. 1251–1262.

    Article  PubMed  CAS  Google Scholar 

  115. Cowell, I.G., Aucott, R., Mahadevaiah, S.K., et al., Heterochromatin, HP1 and Methylation at Lysine 9 of Histone H3 in Animals, Chromosoma, 2002, vol. 111, pp. 22–36.

    Article  PubMed  CAS  Google Scholar 

  116. Schotta, G., Ebert, A., Krauss, V., et al., Central Role of Drosophila SU(VAR)3-9 in Histone H3-K9 Methylation and Heterochromatic Gene Silencing, EMBO J., 2002, vol. 21, pp. 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  117. Ebert, A., Schotta, G., Lein, S., et al., Su(var) Genes Regulate the Balance between Euchromatin and Heterochromatin in Drosophila, Genes Dev., 2004, vol. 18, pp. 2973–2983.

    Article  PubMed  CAS  Google Scholar 

  118. Brockdorff, N., X-Chromosome Inactivation: Closing in on Proteins That Bind Xist RNA, Trends Genet., 2002, vol. 18, pp. 352–358.

    Article  PubMed  CAS  Google Scholar 

  119. Plath, K., Fang, J., Mlynarczyk-Evans, S.K., et al., Role of Histone H3 Lysine 27 Methylation in X Inactivation, Sciencen, 2003, vol. 300, pp. 131–135.

    Article  CAS  Google Scholar 

  120. Silva, J., Mak, W., Zvetkova, I., et al., Establishment of Histone H3 Methylation on the Inactive X Chromosome Requires Transient Recruitment of Eed-Enx1 Polycomb Group Complexes, Dev. Cell, 2003, vol. 4, pp. 481–495.

    Article  PubMed  CAS  Google Scholar 

  121. Kohlmaier, A., Savarese, F., Lachner, M., et al., A Chromosomal Memory Triggered by Xist Regulates Histone Methylation in X Inactivation, PLoS Biol., 2004, vol. 2, p. E171.

    Article  PubMed  Google Scholar 

  122. Heard, E., Rougeulle, C., Arnaud, D., et al., Methylation of Histone H3 at Lys-9 Is an Early Mark on the X Chromosome during X Inactivation, Cell (Cambridge, Mass.), 2001, vol. 107, pp. 727–738.

    CAS  Google Scholar 

  123. Mermoud, J.E., Popova, B., Peters, A.H., et al., Histone H3 Lysine 9 Methylation Occurs Rapidly at the Onset of Random X Chromosome Inactivation, Curr. Biol., 2002, vol. 12, pp. 247–251.

    Article  PubMed  CAS  Google Scholar 

  124. Peters, A.H.F.M., Mermoud, J.E., O’Carroll, D., et al., Histone H3 Lysine 9 Methylation Is an Epigenetic Imprint of Facultative Heterochromatin, Nat. Genet., 2002, vol. 30, pp. 77–80.

    Article  PubMed  CAS  Google Scholar 

  125. Rougeulle, C., Chaumeil, J., Sarma, K., et al., Differential Histone H3 Lys-9 and Lys-27 Methylation Profiles on the X Chromosome, Mol. Cell. Biol., 2004, vol. 24, pp. 5475–5484.

    Article  PubMed  CAS  Google Scholar 

  126. Rice, J.C., Briggs, S.D., Ueberheide, B., et al., Histone Methyltransferases Direct Different Degrees of Methylation to Define Distinct Chromatin Domains, Mol. Cell, 2003, vol. 12, pp. 1591–1598.

    Article  PubMed  CAS  Google Scholar 

  127. Norris, D.P., Brockdorff, N., and Rastan, S., Methylation Status of CpG-Rich Islands on Active and Inactive Mouse X Chromosomes, Mamm. Genome, 1991, vol. 1, pp. 78–83.

    Article  PubMed  CAS  Google Scholar 

  128. Jeppesen, P. and Turner, B.M., The Inactive X Chromosome in Female Mammals Is Distinguished by a Lack of Histone H4 Acetylation, a Cytogenetic Marker for Gene Expression, Cell (Cambridge, Mass.), 1993, vol. 74, pp. 281–289.

    CAS  Google Scholar 

  129. Czermin, B., Schotta, G., Hulsmann, B.B., et al., Physical and Functional Association of SU(VAR)3-9 and HDAC1 in Drosophila, EMBO Rep., 2001, vol. 2, pp. 915–919.

    Article  PubMed  CAS  Google Scholar 

  130. Nakayama, J., Rice, J.C., Strahl, B.D., et al., Role of Histone H3 Lysine 9 Methylation in Epigenetic Control of Heterochromatin Assembly, Science, 2001, vol. 292, pp. 110–113.

    Article  PubMed  CAS  Google Scholar 

  131. Kim, H.S., Choi, E.S., Shin, J.A., et al., Regulation of Swi6/HP1-Dependent Heterochromatin Assembly by Cooperation of Components of the Mitogen-Activated Protein Kinase Pathway and a Histone Deacetylase Clr6, J. Biol. Chem., 2004, vol. 279, pp. 42850–42859.

    Article  PubMed  CAS  Google Scholar 

  132. Taverna, S.D., Coyne, R.S., and Allis, C.D., Methylation of Histone H3 at Lysine 9 Targets Programmed DNA Elimination in Tetrahymena, Cell (Cambridge, Mass.), 2002, vol. 110, pp. 701–711.

    CAS  Google Scholar 

  133. Bannister, A.J., Zegerman, P., Partridge, J.F., et al., Selective Recognition of Methylated Lysine 9 on Histone H3 by the HP1 Chromo Domain, Nature, 2001, vol. 410, pp. 120–124.

    Article  PubMed  CAS  Google Scholar 

  134. Lachner, M., O’Carroll, D., Rea, S., et al., Methylation of Histone H3 Lysine 9 Creates a Binding Site for HP1 Proteins, Nature, 2001, vol. 410, pp. 116–120.

    Article  PubMed  CAS  Google Scholar 

  135. Nielsen, A.L., Oulad-Abdelghani, M., Ortiz, J.A., et al., Heterochromatin Formation in Mammalian Cells: Interaction between Histones and HP1 Proteins, Mol. Cell, 2001, vol. 7, pp. 729–739.

    Article  PubMed  CAS  Google Scholar 

  136. Li, Y., Kirschmann, D.A., and Wallrath, L.L., Does Heterochromatin Protein 1 Always Follow Code?, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, suppl. 4, pp. 16462–16469.

    Article  PubMed  CAS  Google Scholar 

  137. Router, G., Dom, R., Wustmann, G., et al., Third Chromosome Suppressor of Position-Effect Variegation Loci in Drosophila melanogaster, Mol. Gen. Genet., 1986, pp. 481–487.

  138. Wustmann, G., Szidonya, J., Taubert, H., and Reuter, G., The Genetics of Position-Effect Variegation Modifying Loci in Drosophila melanogaster, Mol. Gen. Genet., 1989, vol. 217, pp. 520–527.

    Article  PubMed  CAS  Google Scholar 

  139. Hwang, K., Eissenberg, J.C., and Worman, H.J., Transcriptional Repression of Euchromatic Genes by Drosophila Heterochromatin Protein 1 and Histone Modifiers, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11423–11427.

    Article  PubMed  CAS  Google Scholar 

  140. Greil, F., van der Kraan, I., Delrow, J., et al., Distinct HP1 and Su(var)3-9 Complexes Bind to Sets of Developmentally Coexpressed Genes Depending on Chromosomal Location, Genes Dev., 2003, vol. 17, pp. 2825–2838.

    Article  PubMed  CAS  Google Scholar 

  141. Hearn, M.G., Hedrick, A., Grigliatti, T.A., and Wakimoto, B.T., The Effect of Modifiers of Position-Effect Variegation on the Variegation Heterochromatic Genes of Drosophila melanogaster, Genetics, 1991, vol. 128, pp. 785–797.

    PubMed  CAS  Google Scholar 

  142. Lu, B.Y., Emtage, P.C.R., Duyf, B.J., et al., Heterochromatin Protein 1 Is Required for the Normal Expression of Two Heterochromatin Genes in Drosophila, Genetics, 2000, vol. 155, pp. 699–708.

    PubMed  CAS  Google Scholar 

  143. Piacentini, L., Fanti, L., Berloco, M., et al., Heterochromatin Protein 1 (HP1) Is Associated with Induced Gene Expression in Drosophila Euchromatin, J. Cell Biol., 2003, vol. 161, pp. 707–714.

    Article  PubMed  CAS  Google Scholar 

  144. Schulze, S.R., Sinclair, D.A.R., Fitzpatrick, K.A., and Honda, B.M., A Genetic and Molecular Characterization of Two Proximal Heterochromatic Genes on Chromosome 3 of Drosophila melanogaster, Genetics, 2005, vol. 169, pp. 2165–2177.

    Article  PubMed  CAS  Google Scholar 

  145. Cryderman, D.E., Grade, S.K., Li, Y., et al., Role of Drosophila HP1 in Euchromatic Gene Expression, Dev. Dyn., 2005, vol. 232, pp. 767–774.

    Article  PubMed  CAS  Google Scholar 

  146. Vakoc, C.R., Mandat, S.A., Olenchock, B.A., and Blobel, G.A., Histone H3 Lysine 9 Methylation and HP1 Are Associated with Transcription Elongation through Mammalian Chromatin, Mol. Cell, 2005, vol. 19, pp. 381–391.

    Article  PubMed  CAS  Google Scholar 

  147. Jackson, J.P., Lindroth, A.M., Cao, X., and Jacobsen, S.E., Control of CpNpG DNA Methylation by the KRYPTONITE Histone H3 Methyltransferase, Nature, 2002, vol. 416, pp. 556–560.

    Article  PubMed  CAS  Google Scholar 

  148. Gendrel, A.V., Lippman, Z., Yordan, C., et al., Dependence of Heterochromatic Histone H3 Methylation Patterns on the Arabidopsis Gene DDM1, Science, 2002, vol. 297, pp. 1871–1873.

    Article  PubMed  CAS  Google Scholar 

  149. Tamaru, H. and Selker, E.U., A Histone H3 Methyltransferase Controls DNA Methylation in Neurospora crassa, Nature, 2001, vol. 414, pp. 277–283.

    Article  PubMed  CAS  Google Scholar 

  150. Tamaru, H., Zhang, X., McMillen, D., et al., Trimethylated Lysine 9 of Histone H3 Is a Mark for DNA Methylation in Neurospora crassa, Nat. Genet., 2003, vol. 34, pp. 75–79.

    Article  PubMed  CAS  Google Scholar 

  151. Malagnac, F., Bartee, L., and Bender, J., An Arabidopsis SET Domain Protein Required for Maintenance but Not Establishment of DNA Methylation, EMBO J., 2002, vol. 21, pp. 6842–6852.

    Article  PubMed  CAS  Google Scholar 

  152. Fuks, F., Hurd, P.J., Deplus, R., and Kouzarides, T., The DNA Methyltransferases Associate with HP1 and the SUV39H1 Histone Methyltransferase, Nucleic Acids Res., 2003, vol. 31, pp. 2305–2312.

    Article  PubMed  CAS  Google Scholar 

  153. Lehnertz, B., Ueda, Y., Derijck, A.A.H.A., et al., Suv39h-Mediated Histone H3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin, Curr. Biol., 2003, vol. 13, pp. 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  154. Weissmann, F., Muyrers-Chen, I., Musch, T., et al., DNA Hypermethylation in Drosophila melanogaster Causes Irregular Chromosome Condensation and Dysregulation of Epigenetic Histone Modifications, Mol. Cell. Biol., 2003, vol. 23, pp. 2577–2586.

    Article  PubMed  CAS  Google Scholar 

  155. Freitag, M., Hickey, P.C., Khlafallah, T.K., et al., HP1 Is Essential for DNA Methylation in Neurospora, Mol. Cell, 2004, vol. 13, pp. 427–434.

    Article  PubMed  CAS  Google Scholar 

  156. Tariq, M., Saze, H., Probst, A.V., et al., Erasure of CpG Methylation in Arabidopsis Alters Patterns of Histone H3 Methylation in Heterochromatin, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 8823–8827.

    Article  PubMed  CAS  Google Scholar 

  157. Espada, J., Ballestar, E., Fraga, M.F., et al., Human DNA Methyltransferase 1 Is Required for Maintenance of the Histone H3 Modification Pattern, J. Biol. Chem., 2004, vol. 279, pp. 37 175–37 184.

    Article  CAS  Google Scholar 

  158. Ng, H. and Bird, A., DNA Methylation and Chromatin Modification, Curr. Opin. Genet. Dev., 1999, vol. 9, pp. 158–163.

    Article  PubMed  CAS  Google Scholar 

  159. Hung, M. and Shen, C.J., Eukaryotic Methyl-CpG-Binding Domain Proteins and Chromatin Modification, Eukar. Cell, 2003, vol. 2, pp. 841–846.

    Article  CAS  Google Scholar 

  160. Otte, A.P. and Kwaks, T.H.J., Gene Repression by Polycomb Group Protein Complexes: A Distinct Complex for Every Occasion?, Curr. Opin. Genet. Dev., 2003, vol. 13, pp. 448–454.

    Article  PubMed  CAS  Google Scholar 

  161. Ringrose, L. and Paro, R., Epigenetic Regulation of Cellular Memory by the Polycomb and Trithorax Group Proteins, Annu. Rev. Genet., 2004, vol. 38, pp. 413–443.

    Article  PubMed  CAS  Google Scholar 

  162. Shao, Z., Raible, F., Mollaaghababa, R., et al., Stabilization of Chromatin Structure by PRC1, a Polycomb Complex, Cell (Cambridge, Mass.), 1999, vol. 98, pp. 37–46.

    CAS  Google Scholar 

  163. Francis, N.J., Saurin, A.J., Shao, Z., and Kingston, R.E., Reconstitution of a Functional Core Polycomb Repressive Complex, Mol. Cell, 2001, vol. 8, pp. 545–556.

    Article  PubMed  CAS  Google Scholar 

  164. Huang, D.H., Chang, Y.L., Yang, C.C., et al., Pipsqueak Encodes a Factor Essential for Sequence-Specific Targeting of a Polycomb Group Protein Complex, Mol. Cell. Biol., 2002, vol. 22, pp. 6261–6271.

    Article  PubMed  CAS  Google Scholar 

  165. Mulholland, N.M., King, I.F., and Kingston, R.E., Regulation of Polycomb Group Complexes by the Sequence-Specific DNA-Binding Proteins Zeste and GAGA, Genes Dev., 2003, vol. 17, pp. 2741–2746.

    Article  PubMed  CAS  Google Scholar 

  166. Cao, R., Wang, L., Wang, H., et al., Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing, Science, 2002, vol. 298, pp. 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  167. Czermin, B., Melfi, R., McCabe, D., et al., Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity That Marks Chromosomal Polycomb Sites, Cell (Cambridge, Mass.), 2002, vol. 111, pp. 185–196.

    CAS  Google Scholar 

  168. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., et al., Histone Methyltransferase Activity Associated with a Human Multiprotein Complex Containing the Enhancer of Zeste Protein, Genes Dev., 2002, vol. 16, pp. 2893–2905.

    Article  PubMed  CAS  Google Scholar 

  169. Kuzmichev, A., Jenuwein, T., Tempst, P., and Reinberg, D., Different Ezh2-Containing Complexes Target Methylation of Histone H1 or Nucleosomal Histone H3, Mol. Cell, 2004, vol. 14, pp. 183–193.

    Article  PubMed  CAS  Google Scholar 

  170. Vaquero, A., Scher, M., Lee, D., et al., Human SirT1 Interacts with Histone H1 and Promotes Formation of Facultative Heterochromatin, Mol. Cell, 2004, vol. 16, pp. 93–105.

    Article  PubMed  CAS  Google Scholar 

  171. Kuzmichev, A., Margueron, R., Vaquero, A., et al., Composition and Histone Substrates of Polycomb Repressive Group Complexes Change during Cellular Differentiation, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 1859–1864.

    Article  PubMed  CAS  Google Scholar 

  172. Fischle, W., Wang, Y., Jacobs, S.A., et al., Molecular Basis for the Discrimination of Repressive Methyl-Lysine Marks in Histone H3 by Polycomb and HP1 Chromodomains, Genes Dev., 2003, vol. 17, pp. 1870–1881.

    Article  PubMed  CAS  Google Scholar 

  173. Wang, L., Brown, J.L., Cao, R., et al., Hierarchical Recruitment of Polycomb Group Silencing Complexes, Mol. Cell, 2004, vol. 14, pp. 637–646.

    Article  PubMed  CAS  Google Scholar 

  174. Wang, H., Wang, L., Erdjument-Bromage, H., et al., Role of Histone H2A Ubiquitination in Polycomb Silencing, Nature, 2004, vol. 431, pp. 873–878.

    Article  PubMed  CAS  Google Scholar 

  175. Cao, R., Tsukada, Y., and Zhang, Y., Role of Bmi-1 and Ring1A in H2A Ubiquitylation and Hox Gene Silencing, Mol. Cell, 2005, vol. 20, pp. 845–854.

    Article  PubMed  CAS  Google Scholar 

  176. Vire, E., Brenner, C., Deplus, R., et al., The Polycomb Group Protein EZH2 Directly Controls DNA Methylation, Nature, 2006, vol. 439, pp. 871–874.

    Article  PubMed  CAS  Google Scholar 

  177. Rusche, L.N., Kirchmaier, A.L., and Rine, J., The Establishment, Inheritance, and Function of Silenced Chromatin in Saccharomyces cerevisiae, Annu. Rev. Biochem., 2003, vol. 72, pp. 481–516.

    Article  PubMed  CAS  Google Scholar 

  178. Briggs, S.D., Bryk, M., Strah, B.D., et al., Histone H3 Lysine 4 Methylation Is Mediated by Set1 and Required for Cell Growth and rDNA Silencing in Saccharomyces cerevisiae, Genes Dev., 2001, vol. 15, pp. 3286–3295.

    Article  PubMed  CAS  Google Scholar 

  179. Ivy, J.M., Klar, A.J.S., and Hicks, J.B., Cloning and Characterization of Four SIR Genes of Saccharomyces cerevisiae, Mol. Cell. Biol., 1986, vol. 6, pp. 688–702.

    PubMed  CAS  Google Scholar 

  180. Rine, J. and Herskowitz, I., Four Genes Responsible for a Position Effect on Expression from HML and HMR in Saccharomyces cerevisiae, Genetics, 1987, vol. 116, pp. 9–22.

    PubMed  CAS  Google Scholar 

  181. Aparicio, O.M., Billington, B.L., and Gottschling, D.E., Modifiers of Position Effect Are Shared between Telomeric and Silent Mating-Type Loci in S. cerevisiae, Cell (Cambridge, Mass.), 1991, vol. 66, pp. 1279–1287.

    CAS  Google Scholar 

  182. Smith, J.S. and Boeke, J.D., An Unusual Form of Transcriptional Silencing in Yeast Ribosomal DNA, Genes Dev., 1997, vol. 11, pp. 241–254.

    PubMed  CAS  Google Scholar 

  183. Landry, J., Sutton, A., Tafrov, S.T., et al., The Silencing Protein SIR2 and Its Homologs Are NAD-Dependent Protein Deacetylases, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5807–5811.

    Article  PubMed  CAS  Google Scholar 

  184. Carmen, A.A., Milne, L., and Grunstein, M., Acetylation of the Yeast Histone H4 N-Terminus Regulates Its Binding to Heterochromatin Protein SIR3, J. Biol. Chem., 2002, vol. 277, pp. 4778–4781.

    Article  PubMed  CAS  Google Scholar 

  185. Rusche, L.N., Kirchmaier, A.L., and Rine, J., Ordered Nucleation and Spreading of Silenced Chromatin in Saccharomyces cerevisiae, Mol. Biol. Cell, 2002, vol. 13, pp. 2207–2222.

    Article  PubMed  CAS  Google Scholar 

  186. Agalioti, T., Chen, G., and Thanos, D., Deciphering the Transcriptional Histone Acetylation Code for a Human Gene, Cell (Cambridge, Mass.), 2002, vol. 111, pp. 381–392.

    CAS  Google Scholar 

  187. Pokholok, D.K., Harbison, C.T., Levine, S., et al., Genome-Wide Map of Nucleosome Acetylation and Methylation in Yeast, Cell (Cambridge, Mass.), 2005, vol. 122, pp. 517–527.

    CAS  Google Scholar 

  188. Suka, N., Suka, Y., Carmen, A.A., et al., Highly Specific Antibodies Determine Histone Acetylation Site Usage in Yeast Heterochromatin and Euchromatin, Mol. Cell, 2001, vol. 8, pp. 473–479.

    Article  PubMed  CAS  Google Scholar 

  189. Robert, F., Pokholok, D.K., Hannett, N.M., et al., Global Position and Recruitment of HATs and HDACs in the Yeast Genome, Mol. Cell, 2004, vol. 16, pp. 199–209.

    Article  PubMed  CAS  Google Scholar 

  190. Roh, T., Ngau, W.C., Cui, K., et al., High-Resolution Genome-Wide Mapping of Histone Modifications, Nat. Biotechnol., 2004, vol. 22, pp. 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  191. Liu, C.L., Kaplan, T., Kim, M., et al., Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae, PLoS Biol., 2005, vol. 3, p. E328.

    Article  PubMed  CAS  Google Scholar 

  192. Barratt, M.J., Hazzalin, C.A., Cano, E., and Mahadevan, L.C., Mitogen-Stimulated Phosphorylation of Histone H3 Is Targeted to a Small Hyperacetylation-Sensitive Fraction, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 4781–4785.

    Article  PubMed  CAS  Google Scholar 

  193. Cheung, P., Allis, C.D., and Sassone-Corsi, P., Signaling to Chromatin through Histone Modifications, Cell (Cambridge, Mass.), 2000, vol. 103, pp. 263–271.

    CAS  Google Scholar 

  194. Clayton, A.L., Rose, S., Barratt, M.J., and Mahadevan, L.C., Phosphoacetylation of Histone H3 on c-fos-and c-jun-Associated Nucleosomes upon Gene Activation, EMBO J., 2000, vol. 19, pp. 3714–3726.

    Article  PubMed  CAS  Google Scholar 

  195. Lo, W.S., Trievel, R.C., Rojas, J.R., et al., Phosphorylation of Serine 10 in Histone H3 Is Functionally Linked In vitro and In vivo to GCN5-Mediated Acetylation at Lysine 14, Mol. Cell, 2000, vol. 5, pp. 917–926.

    Article  PubMed  CAS  Google Scholar 

  196. Lo, W.S., Duggan, L., Emre, N.C., et al., Snfl—A Histone Kinase That Works in Concert with the Histone Acetyltransferase GCN5 to Regulate Transcription, Science, 2001, vol. 293, pp. 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  197. Thomson, S., Clayton, A.L., and Mahadevan, L.C., Independent Dynamic Regulation of Histone Phosphorylation and Acetylation during Immediate-Early Gene Induction, Mol. Cell, 2001, vol. 8, pp. 1231–1241.

    Article  PubMed  CAS  Google Scholar 

  198. Nowak, S.J. and Corces, V.G., Phosphorylation of Histone H3 Correlates with Transcriptionally Active Loci, Genes Dev., 2000, vol. 14, pp. 3003–3013.

    Article  PubMed  CAS  Google Scholar 

  199. Santos-Rosa, H., Schneider, R., Bannister, A.J., et al., Active Genes Are Tri-Methylated at K4 of Histone H3, Nature, 2002, vol. 419, pp. 407–411.

    Article  PubMed  CAS  Google Scholar 

  200. Schneider, R., Bannister, A.J., Myers, F.A., et al., Histone H3 Lysine 4 Methylation Patterns in Higher Eukaryotic Genes, Nature Cell. Biol., 2004, vol. 6, pp. 73–77.

    Article  PubMed  CAS  Google Scholar 

  201. Bernstein, B.E., Kamal, M., Lindblad-Toh, K., et al., Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse, Cell (Cambridge, Mass.), 2005, vol. 120, pp. 169–181.

    CAS  Google Scholar 

  202. Nishioka, K., Chuikov, S., Sarma, K., et al., Set9, a Novel Histone H3 Methyltransferase That Facilitates Transcription by Precluding Histone Tail Modifications Required for Heterochromatin Formation, Genes Dev., 2002, vol. 16, pp. 479–489.

    Article  PubMed  CAS  Google Scholar 

  203. Roguev, A., Schaft, D., Shevchenko, A., et al., The Saccharomyces cerevisiae Set1 Complex Includes an Ash2 Homologue and Methylates Histone 3 Lysine 4, EMBO J., 2001, vol. 20, pp. 7137–7148.

    Article  PubMed  CAS  Google Scholar 

  204. Miller, T., Krogan, N.J., Dover, J., et al., COMPASS: A Complex of Proteins Associated with a Trithorax-Related SET Domain Protein, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 12902–12907.

    Article  PubMed  CAS  Google Scholar 

  205. Ng, H., Robert, F., Young, R.A., and Struhl, K., Targeted Recruitment of Set1 Histone Methylase by Elongating Pol II Provides a Localized Mark and Memory of Recent Transcriptional Activity, Mol. Cell, 2003, vol. 11, pp. 709–719.

    Article  PubMed  CAS  Google Scholar 

  206. Henry, K.W., Wyce, A., Lo, W., et al., Transcriptional Activation Via Sequential Histone H2B Ubiquitylation and Deubiquitylation, Mediated by SAGA-Associated Ubp8, Genes Dev., 2003, vol. 17, pp. 2648–2663.

    Article  PubMed  CAS  Google Scholar 

  207. Kim, J., Hake, S.B., and Roeder, R.G., The Human Homolog of Yeast BRE1 Functions As a Transcriptional Coactivator through Direct Activator Interactions, Mol. Cell, 2005, vol. 20, pp. 759–770.

    Article  PubMed  CAS  Google Scholar 

  208. Zhu, B., Zheng, Y., Pham, A.D., et al., Monoubiquitination of Human Histone H2B: The Factors Involved and Their Roles in HOX Gene Regulation, Mol. Cell, 2005, vol. 20, pp. 601–611.

    Article  PubMed  CAS  Google Scholar 

  209. Shahbazian, M.D., Zhang, K., and Grunstein, M., Histone H2B Ubiquitylation Controls Processive Methylation but Not Monomethylation by Dot1 and Set1, Mol. Cell, 2005, vol. 19, pp. 271–277.

    Article  PubMed  CAS  Google Scholar 

  210. Bannister, A.J., Schneider, R., Myers, F.A., et al., Spatial Distribution of Di-and Tri-Methyl Lysine 36 of Histone H3 at Active Genes, J. Biol. Chem., 2005, vol. 280, pp. 17732–17736.

    Article  PubMed  CAS  Google Scholar 

  211. Strahl, B.D., Grant, P.A., Briggs, S.D., et al., Set2 Is a Nucleosomal Histone H3-Selective Methyltransferase That Mediates Transcriptional Repression, Mol. Cell. Biol., 2002, vol. 22, pp. 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  212. Schaft, D., Roguev, A., Kotovic, K.M., et al., The Histone 3 Lysine 36 Methyltransferase, SET2, Is Involved in Transcriptional Elongation, Nucleic Acids Res., 2003, vol. 31, pp. 2475–2482.

    Article  PubMed  CAS  Google Scholar 

  213. Xiao, T., Hall, H., Kizer, K.O., et al., Phosphorylation of RNA Polymerase II CTD Regulates H3 Methylation in Yeast, Genes Dev., 2003, vol. 17, pp. 654–663.

    Article  PubMed  CAS  Google Scholar 

  214. Krogan, N.J., Kim, M., Tong, A., et al., Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II, Mol. Cell. Biol., 2003, vol. 23, pp. 4207–4218.

    Article  PubMed  CAS  Google Scholar 

  215. Kizer, K.O., Phatnani, H.P., Shibata, Y., et al., A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3 K36 Methylation with Transcript Elongation, Mol. Cell. Biol., 2005, vol. 25, pp. 3305–3316.

    Article  PubMed  CAS  Google Scholar 

  216. Carrozza, M.J., Li, B., Florens, L., et al., Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription, Cell (Cambridge, Mass.), 2005, vol. 123, pp. 581–592.

    CAS  Google Scholar 

  217. Keogh, M.C., Kurdistani, S.K., Morris, S.A., et al., Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex, Cell (Cambridge, Mass.), 2005, vol. 123, pp. 593–605.

    CAS  Google Scholar 

  218. Briggs, S.D., Xiao, T., Sun, Z.W., et al., Gene Silencing: Trans-Histone Regulatory Pathway in Chromatin, Nature, 2002, vol. 418, p. 498.

    Article  PubMed  CAS  Google Scholar 

  219. Wargo, M.J. and Rizzo, P.J., Exception to Eukaryotic Rules, Science, 2001, vol. 294, p. 2477.

    Article  PubMed  CAS  Google Scholar 

  220. Rizzo, P.J., Those Amazing Dinoflagellate Chromosomes, Cell Res., 2002, vol. 13, pp. 215–217.

    Article  Google Scholar 

  221. Fischle, W., Wang, Y., and Allis, C.D., Histone and Chromatin Cross-Talk, Curr. Opin. Cell Biol., 2003, vol. 15, pp. 172–183.

    Article  PubMed  CAS  Google Scholar 

  222. LaJeunesse, D. and Shearn, A., Trans-Regulation of Thoracic Homeotic Selector Genes of the Antennapedia and Bithorax Complexes by the trithorax Group Genes: Absent, Small, and Homeotic Discs 1 and 2, Mech. Dev., 1995, vol. 53, pp. 123–139.

    Article  PubMed  CAS  Google Scholar 

  223. Beisel, C., Imhof, A., Greene, J., et al., Histone Methylation by the Drosophila Epigenetic Transcriptional Regulator Ash1, Nature, 2002, vol. 419, pp. 857–862.

    Article  PubMed  CAS  Google Scholar 

  224. Krogan, N.J., Dover, J., Khorrami, S., et al., COMPASS, a Histone H3 (Lysine 4) Methyltransferase Required for Telomeric Silencing of Gene Expression, J. Biol. Chem., 2002, vol. 277, pp. 10753–10755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.E. Koryakov, 2006, published in Genetika, 2006, Vol. 42, No. 9, pp. 1170–1185.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koryakov, D.E. Histone modification and regulation of chromatin function. Russ J Genet 42, 970–984 (2006). https://doi.org/10.1134/S1022795406090043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406090043

Keywords

Navigation