Skip to main content

Advertisement

Log in

Identification of novel histone post-translational modifications by peptide mass fingerprinting

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The extent and pattern of histone post-translational modifications is a key determinant dictating the structure of chromatin. We employed mass spectrometry to map the post-translational modifications present on mammalian core histones. Using accurate peptide mass fingerprinting on proteolytic digests of purified histones, we identified more than 20 novel sites of histone modification. One newly identified site of methylation, histone H4 lysine 59, maps to the surface of the nucleosome in close proximity to the site of the only identified histone core modification, histone H3 lysine 79. Consistent with the role of histone H3 lysine 79 methylation in the formation of silent chromatin structure, histone H4 lysine 59 is essential for transcriptional silencing at the yeast silent mating loci and telomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.
Fig. 2A–D.
Fig. 3.
Fig. 4A, B.

Similar content being viewed by others

References

  • Allfrey VG, Faulkner RM, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Google Scholar 

  • Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175

    CAS  PubMed  Google Scholar 

  • Candido EPM, Dixon GH (1971) Sites of in vivo acetylation in trout testis histone IV. J Biol Chem 246:3182–3188

    CAS  PubMed  Google Scholar 

  • Candido EPM, Dixon GH (1972) Acetylation of trout testis histones in vivo. J Biol Chem 247:3868–3873

    CAS  PubMed  Google Scholar 

  • Dainese P, James P (2001) Protein identification by peptide-mass fingerprinting. In: James P (ed) Proteome research: mass spectrometry. Springer, Berlin Heidelberg New York, pp 103–123

  • Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    Article  CAS  PubMed  Google Scholar 

  • Freitas MA, King E, Shi SDH (2003) Tool command language automation of the modular ion cyclotron data acquisition system (MIDAS) for data-dependent tandem Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 17:363–370

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2002) Histone modification and replacement in chromatin activation. Genes Dev 16:1739–1742

    Article  CAS  PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    CAS  PubMed  Google Scholar 

  • Huang Y (2002) Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 30:1465–1482

    Article  CAS  PubMed  Google Scholar 

  • Jonsson AP (2001) Mass spectrometry for protein and peptide characterisation. Cell Mol Life Sci 58:868–884

    CAS  PubMed  Google Scholar 

  • Kelly TJ, Qin S, Gottschling DE, Parthun MR (2000) Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol Cell Biol 20:7051–7058

    Article  CAS  PubMed  Google Scholar 

  • Kraulis P (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution [see comments]. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA, Bacon DJ (1997) Raster3D: photorealistic molecular graphics. Methods Enzymol 277:505–524

    CAS  Google Scholar 

  • Nawrocki JP, Wigger M, Watson CH, Hayes TW, Senko MW, Benner SA, Eyler JR (1996) Analysis of combinatorial libraries using electrospray Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 10:1860–1864

    Article  CAS  PubMed  Google Scholar 

  • Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16:1518–1527

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Cosgrove MS, Youngman E, Wolberger C, Boeke JD (2002) A core nucleosome surface crucial for transcriptional silencing. Nat Genet 32:273–279

    Article  CAS  PubMed  Google Scholar 

  • Senko MW, Canterbury JD, Guan S, Marshall AG (1996) A high-performance modular data system for Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 10:1839–1844

    Article  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Sures I, Gallwitz D (1980) Histone-specific acetyltransferases from calf thymus. Isolation, properties, and substrate specificity of three different enzymes. Biochemistry 19:943–951

    CAS  PubMed  Google Scholar 

  • Tham WH, Zakian VA (2002) Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21:512–521

    Article  CAS  PubMed  Google Scholar 

  • Thorne AW, Kmiciek D, Mitchelson K, Sautiere P, Crane-Robinson C (1990) Patterns of histone acetylation. Eur J Biochem 193:701–713

    CAS  PubMed  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    CAS  PubMed  Google Scholar 

  • van Leeuwen F, Gottschling DE (2002) Genome-wide histone modifications: gaining specificity by preventing promiscuity. Curr Opin Cell Biol 14:756–762

    Article  PubMed  Google Scholar 

  • van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–756

    PubMed  Google Scholar 

  • Warshel A, Naray-Szabo G, Sussman F, Hwang JK (1989) How do serine proteases really work? Biochemistry 28:3629–3637

    Google Scholar 

  • White CL, Suto RK, Luger K (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J 20:5207–5218

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Tang H (2003) Analysis of core histones by liquid chromatography-mass spectrometry and peptide mapping. J Chromatogr B 783:173–179

    Article  CAS  Google Scholar 

  • Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL (2002a) Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 306:259–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Williams KE, Huang L, Yau P, Siino JS, Bradbury EM, Jones PR, Minch MJ, Burlingame AL (2002b) Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol Cell Proteomics 1:500–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Gottschling for yeast strains, C. Bell for assistance with the rendering of crystal structures and A. Sklenar for critical reading of the manuscript. This work was funded by grants from the National Science Foundation (CHE-0089172), the Camille and Henry Dreyfus Foundation and the Ohio State University to M.A.F. and from the American Cancer Society (RPG-00-340-01-CSM) to M.R.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Freitas.

Additional information

Edited by: B. McKee

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Eugeni, E.E., Parthun, M.R. et al. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112, 77–86 (2003). https://doi.org/10.1007/s00412-003-0244-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0244-6

Keywords

Navigation